Poultry liver protein hydrolyzate in the diet of tilapia (Oreochromis niloticus) larvae

Authors

DOI:

https://doi.org/10.33448/rsd-v12i12.43694

Keywords:

Aquaculture; Zootechnical performance; Biotechnological products.

Abstract

The objective of the present work was to evaluate the performance of Nile tilapia larvae fed with increasing levels of poultry liver hydrolysates. 700 two-day-old larvae were used, distributed in 28 boxes (40 liters), in a completely randomized design with seven treatments and four replications. The treatments consisted of diets with different inclusions of poultry liver hydrolysates: 0 (control), 2, 4, 6, 8, 10 and 12% in isoprotein diets (38% CP). Feeding was carried out six times a day (8; 10; 12; 14; 16 and 18 h). There was no influence of the hydrolyzate on the final weight, final length, final biomass, condition factor and survival of the larvae. Larvae that received diets with 4 and 6% hydrolyzate showed greater standardization in animal weight. It is recommended to use at least 4% of poultry liver protein hydrolyzate, providing greater uniformity of Nile tilapia larvae.

References

Aguila, J., Cuzon, G., Pascual, C., Domingues, P.M., Gaxiola, G., Sánchez, A., Maldonato, T., & Rosas, C. (2007). The effects of fish hydrolysate (CPSP) level on Octopus maya (Voss and Solis) diet: Digestive enzyme activity, blood metabolites, and energy balance. Aquaculture, 273 (4), 641-655. https://doi.org/10.1016/j.aquaculture.2007.07.010

Alves, D. R. S., Silva, T. C., Rocha, J. D. M., Oliveira, S. R., Signor, A., & Boscolo, W. R. (2019). Compelling palatability of protein hydrolysates for Nile tilapia juveniles. Latin American Journal of Aquatic Research, 47, 371-376. http://doi.org/10.3856/vol47-issue2-fulltext-19

Amiza, M. A., Liyana, H. A., & Zaliha, H. (2017). Optimization of enzymatic protein hydrolysis conditions to obtain maximum angiotensin-I-converting enzyme (ACE) inhibitory activity from Angel Wing Clam (Pholas orientalis) meat. Madridge Journal of Food Technology, 2 (1), 65-73. http://doi.org/10.18689/mjft-1000110

Bhaskar, N., Modi, V. K., Govindaraju, K. Radha, C., & Lalitha, R. G. (2007). Utilization of meat industry by products: Protein hydrolysate from sheep visceral mass. Bioresource Technology, 98, 388-394. https://doi.org/10.1016/j.biortech.2005.12.017

Boscolo, C. N. P., Morais, R.N., & Freitas, E. G. (2011). Same-sized fish groups increase aggressive interaction of sex-reversed males nile tilapia gift strain. Applied Animal Behaviour Science, 135(1-2), 154-159. Https://doi.org/10.1016/j.applanim.2011.10.003

Cândido, L. M. B. (1998). Obtenção de Concentrados e Hidrolisados Protéicos de Tilápia do Nilo (Oreochromis niloticus): Composição, Propriedades Nutritivas e Funcionais. Tese (Doutorado em Engenharia de Alimentos), Universidade Estadual de Campinas, São Paulo.

Cândido, L. M. B., & Sgarbieri, V. C. (2003). Enzymatic hydrolysis of Nile tilapia (Oreochromus niloticus) myofibrillar proteins: effects on nutritional and hydrophilic properties. Journal of the Science of Food and Agriculture, 83, 937-944. https://doi.org/10.1002/jsfa.1419

Cardoso, M. S., Godoy, A. C., Oxford, J. H., Rodrigues, R. B., Cardoso, M. S., Bittencourt, F., Signor, A., Boscolo, W. R., & Feiden, A. (2020). Apparent digestibility of protein hydrolysates from chicken and swine slaughter residues for Nile tilapia. Aquaculture, 529, 735720-735731. https://doi.org/10.1016/j.aquaculture.2020.735720

Carvalho, K. V., Luczinski, T. G., Boscolo, W. R., Freitas, J. M. A., & Signor, A. (2020). Poultry byproducts and swine liver used in diets for Nile tilapia juveniles. Latin American Journal of Aquatic Research, 48 (5), 895-900. http://doi.org/10.3856/vol48-issue5-fulltext-2524

Dieterich, F. (2014). Desenvolvimento, avaliação físico-química e biológica de hidrolisado proteico de resíduos agroindustriais para surubim. Tese (Doutorado em Aquicultura), Universidade Estadual Paulista/Centro de Aquicultura, São Paulo.

Finkler, J. K., Piana, P. A., Fernanda, J., Boscolo, W. R., Feiden, A., Signor, A., & Fiorese, M. L. (2022). Production of fish protein hydrolisates from Oreochromis niloticus fillet trimmings. Research, Society and Development, 11(6), e37311629172. https://doi.org/10.33448/rsd-v11i6.29172

Fries, E. M., Luchesi, J. D., Costa, J. M., Ressel, C., Signor, A. A., Boscolo, W. R., & Feiden, A. (2011). Hidrolisados Cárneros Proteicos em Rações para Alevinos de Kinguio (Carassius auratus). Boletim do Instituto de Pesca, 37 (4), 401-407.

Giannetto, A., Esposito, E., Lanza, M., Oliva, S., Riolo, K., Di Pietro, S., & Macrì, F. (2020). Protein hydrolysates from anchovy (Engraulis encrasicolus) waste: In vitro and in vivo biological activities. Marine drugs, 18 (2), 86. http://doi.org/10.3390/md18020086

Gomes, J. R. (2020) Hidrolisado proteico de fígado de aves como aditivo em dietas para tilápia do Nilo. Dissertação (Mestrado em Biologia Animal). Universidade Federal de Viçosa, Minas Gerais.

Lafarga, T., & Hayes, M. (2014). Bioactive peptides from meat muscle and by-products: Generation, functionality and application as functional ingredients. Meat Science, 98(2), 227-239. https://doi.org/10.1016/j.meatsci.2014.05.036

Lewandowski, V., Bittarello, A. C., Pessini, J. E., Signor, A., Feiden, A., & Boscolo, W. R. (2013). Hidrolisado proteico de tilápia na larvicultura de bagre africano, Clarias gariepinus (Burchell, 1822). Cultivando o Saber, 6(2), 172-177.

Lorenz, E. K., Barone, R. S. C., Yamamoto, F. Y., & Cyrino, J. E. P. (2018). Dietary Protein Hydrolysates from Animal By-Products: Digestibility and Enzymatic Activity for Dourado Salminus brasiliensis. Journal of Aquatic Food Product Technology, 27(2), 236-246. https://doi.org/10.1080/10498850.2018.1424745

Martínez-Alvarez, O., Chamorro, S., & Brenes, A. (2015). Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Research International, 73, 204-212. https://doi.org/10.1016/j.foodres.2015.04.005

Martins, M. X .B., Franco, A. C., Takeshita, N. A., Mattioli, C. C., & Hisano, H. (2021). Potencial Redução Do Estresse Em Larvas De Tilápia Do Nilo Alimentadas Com Hidrolisado Proteico De Fígado De Aves. 15º Congresso Interinstitucional de Iniciação Científica – CIIC 2021.

Martins, V. G., Costa, J. A.V., & Prentice-Hernández, C. (2009). Hidrolisado proteico de pescado obtido por vias química e enzimática a partir de corvina (Micropogonias furnieri). Quimica Nova, 32(1), 61-66. https://doi.org/10.1590/S0100-40422009000100012

Martone, C. B., Borla, O. P., & Sánchez, J. J. (2005). Fishery byproduct as a nutriente source for bacteria and archaea growth media. Bioresource Technology, 96(3), 383-387. https://doi.org/10.1016/j.biortech.2004.04.008

Nunes, R. V., Pozza, P. C., Nunes, C. G. V., Campestrini, E., Kuhl, R., Rocha, L. D., & Costa, F. G. P. (2005). Valores energéticos de subprodutos de origem animal para aves. Revista Brasileira de Zootecnia, 34(4), 1217-1224. https://doi.org/10.1590/S1516-35982005000400017

Oliva-Teles, A., Cerqueira, A. L., & Gonçalves, P. (1999). The utilization of diets containing high levels of fish protein hydrolysate by turbot (Scophthalmus maximus) juveniles. Aquaculture, 179(1-4), 195-201. https://doi.org/10.1016/S0044-8486(99)00162-3

Pacheco, M. T. B., Dias, N. F. G., Baldini, V. L. S., Tanikawa, C., & Sgarbieri, V. C. (2005). Propriedades funcionais de hidrolisados obtidos a partir de concentrados proteicos de soro de leite. Ciência e Tecnologia de Alimentos, 25(2), 333-338. https://doi.org/10.1590/S0101-20612005000200026

Roslan, J., Mustapa Kamal, S. M., Yunos, K. F. Md., & Abdullah, N. (2015). Optimization of enzymatic hydrolysis of tilapia (Oreochromis niloticus) byproduct using response surface methodology, International Food Research Journal, 22(3), 1117-1123.

Roslan, J., Yunos, K. F. Md., Abdullah, N., & Kamal, S. M. M. (2014). Characterization of Fish Protein Hydrolysate from Tilapia (Oreochromis niloticus) by-Product. Agriculture and Agricultural Science Procedia, 2, 312-319. https://doi.org/10.1016/j.aaspro.2014.11.044

Silva, T. C. (2014). Hidrolisado proteico de resíduo de pescado na alimentação da tilápia do Nilo: digestibilidade e desempenho zootécnico. Dissertação (Mestrado em Recursos Pesqueiros e Engenharia de Pesca). Universidade Estadual do Oeste do Paraná.

Tkaczewska, J., Borawska-Dziadkiewicz, J., Kulawik, P., Duda, I., Morawska, M., & Mickowska, B. (2020). The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. Food Science and Technology, 117(1), 108616. https://doi.org/10.1016/j.lwt.2019.108616

Vázquez, J. A., Blanco, M., Massa, A. E., Amado, I. R., & Pérez-Martín, R. I. (2017). Production of Fish Protein Hydrolysates from Scyliorhinus canicula Discards with Antihypertensive and Antioxidant Activities by Enzymatic Hydrolysis and Mathematical Optimization Using Response Surface Methodology. Marine Drugs, 15(10), 306. https://doi.org/10.3390/md15100306

Vioque, J., Pedroche, J., Yust, M. M., Lqari, H., Megías, C., Girón-Calle, J., Alaiz, M., & Millán, F. (2006). Peptídeos bioativos em proteínas vegetais de reserva. Brazilian Journal of Food Technology, 16, 99-102.

Yarnpakdee S., Benjakul S., Kristinsson H. G., & Kishimura H. (2015). Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one-and two-step hydrolysis. Journal of Food Science and Technology, 6, 3336-3349. https://doi.org/10.1007/s13197-014-1394-7

Published

19/11/2023

How to Cite

PAULA, G. H. de .; MATIELO, K. da S. .; MOURA, W. A. de .; FIGUEIREDO, E. da S. .; SILVA, K. N. da .; KLEIN, S.; KOLLING, E. M. .; REIDEL, A. .; SIGNOR, A. A. . Poultry liver protein hydrolyzate in the diet of tilapia (Oreochromis niloticus) larvae. Research, Society and Development, [S. l.], v. 12, n. 12, p. e117121243694, 2023. DOI: 10.33448/rsd-v12i12.43694. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/43694. Acesso em: 16 nov. 2024.

Issue

Section

Agrarian and Biological Sciences