Case study of the application of extonsometry in experimental analysis
DOI:
https://doi.org/10.33448/rsd-v12i13.44191Keywords:
Composite; Deformation; Extensometer; Modulus of elasticity.Abstract
The article addresses the importance of extensometry in evaluating cabling conditions in structural projects and analyses. The need for a more elaborate assessment of the existing forces is highlighted to avoid failures due to overload or wear during the useful life of the parts. In a competitive market that demands cost and quality reduction, extensometry emerges as a fundamental technique. Extensometry is presented as an experimental technique for analyzing stress and deformation in mechanical and masonry structures. However, in practice, the extensometer is described as a sensor glued to the surface of the object of study, capable of measuring deformations and, therefore, so complex. The change in the electrical parameter, usually resistance, results in a variation in current, whose values are interpreted by a data acquisition board and computational tool. The objective of the work is to find the modulus of elasticity and the initial deformation relationship and linear regression of the fibrous composite used, when subjected to loads, such analysis carried out using the extensometer. However, the behavior of the composite is analyzed in the form of increasing and then decreasing load addition. However, using the data obtained, a linear regression of the graph curve is performed. The text highlights the peculiarities of strain gauges, which are used to measure several variables, such as load, tension, stretching, variation and vibration. In this context, the analyzes carried out in the work had positive results, managing to find the elastic modulus of the composite through equations and graphs.
References
Almeida, L. (2020). O que é calibração. Nexxto.
Barreto Jr. E. (2002) Conhecendo o extensômetro elétrico de resistência – Manual técnico.
Bastos, J. (N.D.). (2019). Condicionamento em ponte de wheatstone de um termistor. http://intranet.deei.fct.ualg.pt/archive/Inst_2000/lab03.pdf
Beer, F. P. & Johnston, Jr. E. R. (1995). Resistência dos Materiais. (3a ed.), Pearson Makron Books.
Callister Jr. W. D. & Rethwisch, D. G. (2015). Ciência e Engenharia dos. Materiais: Uma Introdução, (8a ed.), Gen LTC.
Grante (2004). Grupo de Análise e Projeto Mecânico. Apostila de Extensiometria – Universidade Federal de Santa Catarina. http://grante.ufsc.br/download/Extensometria/SG-Apostila.pdf.
Markus, O. (2009). Circuitos Elétricos - Corrente Contínua e Corrente Alternada. (8a ed.), Érica.
Marques Júnior, A. L. (2016). Automatização de uma bancada de atrito e desgaste para seleção de materiais de uma bomba de sangue centrífuga implantável / Antonio Luiz Marques Júnior. Instituto Federal de Educação, Ciência e Tecnologia de São Paulo.
Massoni, N. T. (2014). Ensino de laboratório em uma disciplina de Física Básica voltada para cursos de Engenharias: análises e perspectivas. Caderno Brasileiro de Ensino de Física, 31(2), 58-288.
Measurements Group. (1996). Catalog 500 - Precision Strain Gages. Raleigh.
Ni Measurement. (2013). Medindo distensão com Strain Gages.
Omega (Brasil). (2019). Introdução a sensores de deformação. http://br.omega.com/prodinfo/sensores-de-deformacao.html.
Operating Manual – QuantumX - HBM. (2016). https://sites.fct.unl.pt/sites/default/files/declabs/files/quantum_mx1615-manual-eng.pdf
Parreira, J. E. & Dickman, A. G. (2020). Objetivos das aulas experimentais no ensino superior na visão de professores e estudantes da engenharia. Revista Brasileira de Ensino de Física, 42,17.
Portnoi, M. (2013). Extensometria, história, uso e aparelho. EECIS. https://www.eecis.udel.edu/~portnoi/academic/academic-files/extensometria.html.
Rodrigues, A. (2021). Memorial Acadêmico Alexandre Guimarães Rodrigues. UFPA.
Schneider, Fabiano. (2019). Medição de pressão e a metrologia. Novus, 2019. https://cdn.novusautomation.com/downloads/medi%C3%A7%C3%A3o%20de%20press%C3%A3o%20e%20a%20metrologia.pdf.
Shakeel, M., Khan, W. A. & Rahman, K. (2017). Fabrication of cost effective and high sensitivity resistive strain gauge using DIW technique. Sensors and Actuators A: Physical – Elsevier. 123130.
The Mathworks inc. Matlab Product Description. (2018). MathWorks. http://www.mathworks.com/help/matlab/learn_matlab/product-description.html.
Vishay Precision Group, inc. (2018). General Purpose Strain Gage –Linear Pattern. Vishay Precision Group, Inc. http://www.vishaypg.com/docs/11189/062uw.pdf.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tarcísio Gomes Parente Neto; Ricardo Antônio Lima Sousa Filho; Tyhago Aragão Dias; Nágila Veiga Adrião Monteiro; Mariana Medeiros Ximenes; Antônio Carlos Moreira Cavalcante Filho; Elis Ferreira Lopes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.