Adsorption of methyl orange dye onto activated carbon prepared from cupuaçu shell

Authors

DOI:

https://doi.org/10.33448/rsd-v12i14.44394

Keywords:

Residual biomass; Adsorbent; Textile dye; Kinetic models.

Abstract

The contamination of water resources by synthetic chemical substances, such as textile dyes, represents a serious environmental problem, as many of these compounds are toxic and can cause damage to the environment and human health. This work aimed to evaluate the efficiency of activated carbon obtained from cupuaçu shell in the adsorption process of methyl orange dye. The adsorbent was prepared by chemical activation using 85% phosphoric acid followed by carbonization at 500 oC for 60 minutes. The batch adsorption tests were performed using activated carbon with different dosage diluted in a dye solution at 10 mg/L. The kinetic tests results showed that equilibrium was achieved after 10 minutes, with almost 100% removal, maximum adsorption capacity of 9.50 mg/g (mads = 50 mg) and 19.70 mg/g (mads = 25 mg). The experimental data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models, with the pseudo-second-order being the one that best described the process, resulting in values closer to the maximum adsorbed capacity at equilibrium, experimental and calculated. In this way, activated carbon from cupuaçu shell showed excellent potential in methyl orange adsorption studies, becoming a promising alternative in the remediation of organic pollutants.

Author Biographies

Mayra Paula de Souza e Sousa, Universidade Federal do Amazonas

Engenharia Química pela Universidade Federal do Amazonas (2017- 2023) com Duplo diploma, através do programa BRAFITEC (Brasil França Engenharia Tecnologia), em Engenharia Quimica, com especialização em Engenharia de Processos, pela Ecole Nationale Supérieure de Chimie de Clermont-Ferrand (atual SIGMA Clermont), na França. Atuou no projeto de desenvolvimento tecnológico intitulado: Projeto e construção de um extrator solar de óleos essenciais de plantas aromáticas e medicinais da Amazônia, onde foi bolsista (2018-2019). Participou como Apoio Técnico do projeto Desempenho do Bioadsorvente obtido de resíduos amazônicos no processo de descontaminação do Rio Negro por derivados de petróleo, como bolsista pela Fundação de Amparo à Pesquisa do Estado do Amazonas (2022-2023). Atuou como estagiária gerencial na empresa Procter Gamble (2022 - 2023).

Cristiane Daliassi Ramos de Souza, Universidade Federal do Amazonas

Possui graduação em Engenharia Química pela Universidade Federal do Ceará, mestrado em Engenharia Química pela Universidade Federal do Rio Grande do Norte e doutorado em Química (biocombustíveis) pela Universidade Federal do Amazonas. Atualmente é professora Associada do curso de Engenharia Química da Universidade Federal do Amazonas e pesquisadora do Centro de Desenvolvimento Energético Amazônico (CDEAM). Tem experiência nas áreas de Química Analítica e Engenharia Química, com ênfase em adsorção, biocombustíveis, catalisadores mesoporosos, remediação de derramamentos de petróleo e aproveitamento energético de biomassa

Lucas Orleam Nunes do Nascimento, Universidade Federal do Amazonas

Tem experiência na área de Engenharia química com foco em desenvolvimento de produtos naturais e indústria farmacêutica. Atualmente, tem interesses nas áres de controle e simulação de processos químicos.

Mikelle Silva de Oliveira, Universidade Federal do Amazonas

Mestrado em Ciências Ambientais, Especialização em Metodologia do Ensino da Química, Graduação em Tecnologia em Processos Químicos e Licenciatura em Química, Técnico em Química. Possui experiência na área industrial/galvanoplastia e gerenciamento em laboratórios de ensino/pesquisa, atualmente é Servidora Pública Federal da UFAM no cargo de técnica de laboratório/área: química, lotada no Departamento de Engenharia Química.

References

Alves, J. L. F., Silva, J. C. G., Mumbach, G. D., Domenico, M. D., Bolzan, A., Machado, R. A. F., & Marangoni, C. (2022). Evaluating the bioenergy potential of cupuassu shell through pyrolysis kinetics, thermodynamic parameters of activation, and evolved gas analysis with TG/FTIR technique. Thermochimica Acta, 711, 179187. https://doi.org/10.1016/j.tca.2022.179187

Alyasi, H., Mackey, H., & Mckay, G. (2023). Adsorption of Methyl Orange from Water Using Chitosan Bead-like Materials. Molecules, 28(18), 6561. https://doi.org/10.3390/molecules28186561

Antunes, E. C. E. S., Pereira, J. E. S., Ferreira, R. L. S., Medeiros, M. F. D., & Barros Neto, E. L. (2018). Remoção de corante têxtil utilizando a casca do abacaxi como adsorvente natural. Holos, 3, 81-97. https://doi.org/10.15628/holos.2018.5334

Barakat, M. A., Selim, A. Q., Mobarak, M., Kumar, R., Anastopoulos, I., Giannakoudakis, D., Bonilla-Petriciolet, A., Mohamed, E. A., Seliem, M. K., & Komarneni, S. (2020). Experimental and theoretical studies of methyl orange uptake by Mn–rich synthetic mica: insights into manganese role in adsorption and selectivity. Nanomaterials, 10(8), 1464. https://doi.org/10.3390/nano10081464

Cheah, W., Hosseini, S., Khan, M. A., Chuah, T. G., & Choong, T. S. Y. (2013). Acid modified carbon coated monolith for methyl orange adsorption. Chemical Engineering Journal, 215-216, 747-754. https://doi.org/10.1016/j.cej.2012.07.004

Cheung, W. H., Szeto, Y. S., & McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technology, 98(15), 2897-2904. https://doi.org/10.1016/j.biortech.2006.09.045

Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., & Rogalski, M. (2015). Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. Journal of the Taiwan Institute of Chemical Engineers, 53, 112-121. https://doi.org/10.1016/j.jtice.2015.02.025

Foo, K. Y. & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013

Gómez, V., Larrechi, M. S., & Callao, M. P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, 69(7), 1151-1158. https://doi.org/10.1016/j.chemosphere.2007.03.076

Gondim, T. M. S., Thomazini, M. J., Cavalcante. M. J. B., & Souza, J. M. L. (2001). Aspectos da Produção de Cupuaçu. EMBRAPA: Rio Branco.

Hasan, M., Rashid, M. M., Hossain, M. M., Al Mesfer, M. K., Arshad, M., Danish, M., Lee, M., Jery, A. E., & Kumar, N. (2019). Fabrication of polyaniline/activated carbon composite and its testing for methyl orange removal: Optimization, equilibrium, isotherm and kinetic study. Polymer Testing, 77, 105-909. https://doi.org/10.1016/j.polymertesting.2019.105909

Ho, Y-S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681-689, 2006. https://doi.org/10.1016/j.jhazmat.2005.12.043

Ho, Y. S. & Mckay, G. (1998). Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Safety and Environmental Protection, 76(2), 183-191. https://doi.org/10.1205/095758298529326

Ho, Y. S., Wase, D. A. J., & Forster, C. F. (1996). Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environmental Technology, 17(1), 71-77. https://doi.org/10.1080/09593331708616362

Hung, N. V., Nguyet, B. T., Nghi, N. H., Thanh, N. M., Quyen, N. D., Nguyen, V. T., Nhiem, D. N., & Khieu, D. Q. (2023). Highly effective adsorption of organic dyes from aqueous solutions on longan seed-derived activated carbon. Environmental Engineering Research, 28(3), 220116. https://doi.org/10.4491/eer.2022.116

Liu, Y., Wang, S., Zhou, H., Li, X., Duan, L., Chen, S., Li, S., Zhang, L., & Zhang, A. (2020). Simultaneous removal of methyl orange and Cr(VI) using polyethyleneimine-modified corncob-derived carbon material. BioResources, 15(4), 7342-7356. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2020/08/BioRes_15_4_7342_Liu_WZLDCLZZ_Simultan_Removal_Methyl_Orange_CrVI_PEI_modif_Carbon_17766.pdf

Luo, L., Wu, X., Li, Z., Zhou, Y., Chen, T., Fan, M., & Zhao, W. (2019). Synthesis of activated carbon from biowaste of fir bark for methylene blue removal. Royal Society Open Science, 6(9), 190523. https://doi.org/10.1098/rsos.190523

Marrakchi, F., Ahmed, M. J., Khanday, W. A., Asif, M., & Hameed, B. H. (2017). Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. Journal of the Taiwan Institute of Chemical Engineers, 71, 47-54. https://doi.org/10.1016/j.jtice.2016.12.026

Naushad, M., Alqadami, A. A., Alothman, Z. A., Alsohaimi, I. H., Algamdi, M. S., & Aldawsari, A. M. (2019). Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. Journal of Molecular Liquids, 293, 111442. https://doi.org/10.1016/j.molliq.2019.111442

Rêgo Júnior, A. G., Nobrega, G. A. S., Silva, R. C. L., & Gomes, D. A. A. (2022). Estudo da remoção de corante azul de metileno de soluções aquosas usando o bambu in natura (Bambusa Vulgaris) como adsorvente. Research, Society and Development, 11(6), e46711629314. https://doi.org/10.33448/rsd-v11i6.29314

Santos, L. B., Striebeck, M. V., Crespi, M. S., Capela, J. M. V., Ribeiro, C. A., & De Julio, M. (2016). M. Energy evaluation of biochar obtained from the pyrolysis of pine pellets. Journal of Thermal Analysis and Calorimetry, 126, 1879. https://doi.org/10.1007/s10973-016-5683-4

Serban, G. V., Iancu, V. I., Dinu, C., Tenea, A., Vasilache, N., Cristea, I., Niculescu, M., Ionescu, I., & Chiriac, F. L. (2023). Removal Efficiency and Adsorption Kinetics of Methyl Orange from Wastewater by Commercial Activated Carbon. Sustainability, 15(17), 12939. https://doi.org/10.3390/su151712939

Subbaiah, M. V. & Kim, D. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicology and Environmental Safety, 128, 109-117. https://doi.org/10.1016/j.ecoenv.2016.02.016

Uddin, M. T., Islam, M. A., Mahmud, S., & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. Journal of Hazardous Materials, 164(1), 53-60. https://doi.org/10.1016/j.jhazmat.2008.07.131

Wang, S., Dou, J., Zhang, T., Li, S., & Chen, X. (2023). Selective Adsorption of Methyl Orange and Methylene Blue by Porous Carbon Material Prepared From Potassium Citrate. ACS Omega, 8(38), 35024-35033. https://doi.org/10.1021/acsomega.3c04124

Wu, L., Liu, X., Lv, G., Zhu R., Tian, L., Liu, M., Li, Y., Rao, W., Liu, T., & Liao, L. (2021). Study on the adsorption Properties of methyl orange by natural one‑dimensional nano‑mineral materials with different structures. Scientific Reports, 11(1), 10640. https://doi.org/10.1038/s41598-021-90235-1

Wu, Y., Su, M., Chen, J., Xu, Z., Tang, J., Chang, X., & Chen, D. (2019). Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. Dyes and Pigment, 170, 107-591. https://doi.org/10.1016/j.dyepig.2019.107591

Yaseen, D. A. & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology, 16, 1193-1226. https://doi.org/10.1007/s13762-018-2130-z

Published

17/12/2023

How to Cite

SOUSA, M. P. de S. e .; SOUZA, C. D. R. de .; NASCIMENTO, L. O. N. do .; OLIVEIRA, M. S. de . Adsorption of methyl orange dye onto activated carbon prepared from cupuaçu shell. Research, Society and Development, [S. l.], v. 12, n. 14, p. e17121444394, 2023. DOI: 10.33448/rsd-v12i14.44394. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/44394. Acesso em: 17 may. 2024.

Issue

Section

Engineerings