Evaluation of factors related to th1-th2 immunomodulation in ovine co-infection with Corynebacterium pseudotuberculosis and Haemonchus contortus

Authors

DOI:

https://doi.org/10.33448/rsd-v13i3.44647

Keywords:

Corynebacterium pseudotuberculosis; Haemonchus contortus; MicroRNAs; Sheep.

Abstract

Caseous lymphadenitis (CL), whose agent Corynebacterium pseudotuberculosis is responsible for developing an infectious process in sheep and goats, with consequent economic losses to the production chain. The Northeastern states have the highest number of prevalence cases, due to having the largest herds of small ruminants in the country. As with the bacterial infection of CL, parasites, such as that caused by Haemonchus contortus, also generate economic losses in sheep farming. MicroRNAs (miRNAs) have emerged as important regulatory molecules of the immune system. Some miRNAs produced during infection by intracellular pathogens such as Mycobacterium tuberculosis, for example, can negatively regulate the production of cytokines such as interferon-γ, thus increasing the pathogen's resistance to defense mechanisms. To evaluate serum levels of miRNAs and correlate with the Th1 response in sheep experimentally infected with C. pseudotuberculosis and its co-infection with the helminth H. contortus, an experimental study was carried out with fourteen sheep divided into three groups: control, infected and co-infected, where a serological test for LC, IFN-γ assay and quantification of microRNAs were carried out. Stool samples were performed with stool cultures and fecal parasitology (OPG). In the group of co-infected animals, an increase in IgG antibody titers was observed, and IFN-γ remained lower in the infected and co-infected groups when compared to the control group, thus demonstrating a possible modulation of the immune response by microRNAs expressed in these groups, indicating that a modulation of the immunological response occurs.

References

Afum-Adjei Awuah, A., Ueberberg, B., Owusu-Dabo, E., Frempong, M., Jacobsen, M. (2014). Dynamics of T-cell IFN-γ and miR-29a expression during active pulmonary tuberculosis. International Immunology. 26(10):579-82. 10.1093/intimm/dxu068.

Arsenault, J., Girard, C., Dubreuil, P., Daignault, D., Galarneaeu, J., Boisclair, J., Simar, D., Belanger, D. (2003). Prevalence of and carcass condemnation from maedi-visna, paratuberculosis and caseous lymphadenitis in culled sheep from Quebec, Canada. Preventive Veterinary Medicine, 59, 1-2, 67-81. 10.1016/s0167-5877(03)00060-6.

Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O'Garra A. (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 19;466(7309):973-7. 10.1038/nature09247.

Carminati, R., Bahia, R., Moura-Costa, L. F., Paule, B. J. A., Vale, V. L., Regis, L., Freire, S. M., Nascimento, I., Schaer, R., & Meyer, R. (2003). Determinação da sensibilidade e da especificidade de um teste de ELISA indireto para o diagnóstico de linfadenite caseosa em caprinos. Revista de Ciências Medicas e Biológicas, 2(1), 88-93. https://doi.org/10.9771/cmbio.v2i1.4256.

Droppa-Almeida, D., Vivas, W. L. P., Silva, K. K. O., Rezende, A. F. S., Simionatto, S., Meyer, R., Lima-Verde, I. B., Delagostin, O., Borsuk, S., & Padilha, F. F. (2015). Recombinant CP40 from Corynebacterium pseudotuberculosis confers protection in mice after challenge with a virulent strain. Vaccine, 34, 1091-1096. 10.1016/j.vacina.2015.12.064.

Fu, Y., Yi, Z., Wu, X., Li, J., Xu, F. (2011). Circulating microRNAs in patients with active pulmonary tuberculosis. Journal of Clinical Microbiology. 49(12):4246-51. 10.1128/JCM.05459-11.

Gill, H. S., Altmann, K., Cross, M. L., Husband, A. J. (2000). Induction of T helper 1- and T helper 2-type immune responses during Haemonchus contortus infection in sheep. Immunology. 99(3):458-63. 10.1046/j.1365-2567.2000.00974.x.

Gordon, H. M. & Whitlock, H. V. (1939). A new technique for counting nematode eggs in sheep faeces. Journal Council for Scientific and Industrial Research, 12(1), 50-52.

Guimarães, A. S., Carmo, F. B., Heinemann, M. B., Portela, R.W., Meyer, R., Lage, A. P., Seyffert, N., Miyoshi, A., Azevedo, V., & Gouveia, A. M. (2011). High sero-prevalence of caseous lymphadenitis identified in slaughterhouse samples as a consequence of deficiencies in sheep farm management in the state of Minas Gerais, Brazil. BMC Veterinary Research, 8, 7, 68. 10.1186/1746-6148-7-68.

Guimarães, A.S., Seyffert, N., Bastos, B.L., Portela, R.W.D., Meyer, R., Carmo, F.B., Cruz, J.C.M., McCulloch, J.A., Lage, A.P., Heinemann, M.B., Miyoshi, A., Azevedo, Vasco., Gouveia, A.M.G. (2009). Caseous lymphadenitis in sheep flocks of the state of Minas Gerais, Brazil: Prevalence and management surveys. Small Ruminant Research, 87, 86-91. 10.1016/j.smallrumres.2009.09.027.

Harapan, H., Fitra, F., Ichsan, I., Mulyadi, M., Miotto, P., Hasan, N.A., Calado, M., Cirillo, D.M. (2013). The roles of microRNAs on tuberculosis infection: meaning or myth? Tuberculosis (Edinb). 93(6):596-605.10.1016/j.tube.2013.08.004.

Lima, H.L. & Silva, S. (2012). Haemonchus contortus: Um problema na ovinocultura. Sul Brasil Rural. v. 91.

Ma, F., Xu, S., Liu, X., Zhang, Q., Xu, X., Liu, M., Hua, M., Li, N., Yao, H., Cao, X. (2011). The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nature Immunology. 12(9):861-9. 10.1038/ni.2073.

MacKinnon, K.M., Zajac, A.M., Kooyman, F.N., Notter, D.R. (2010). Differences in immune parameters are associated with resistance to Haemonchus contortus in Caribbean hair sheep. Parasite Immunology. 32(7):484-93. 10.1111/j.1365-3024.2010.01211.x.

Maertzdorf, J., Repsilber, D., Parida, S.K., Stanley, K., Roberts, T., Black, G., Walzl, G., Kaufmann, S.H. (2011). Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immunology. 12(1):15-22. 10.1038/gene.2010.51.

MEYER, R. (2003). Corynebacterium tuberculosis e seu hospedeiro: aspectos da imunidade, do imunodiagnóstico e da prevalência. Tese de Doutorado. Programa de Pós-Graduação em Imunologia da Universidade Federal da Bahia, Brasil.

Meyer, R., Regis, L., Vale, V., Paule, B., Carminati, R., Bahia, R., Moura-Costa, L., Schaer, R., Nascimento, I., Freire, S. (2005). In vitro IFN-gamma production by goat blood cells after stimulation with somatic and secreted Corynebacterium pseudotuberculosis antigens. Veterinary Immunology and Immunopathology. 15;107(3-4):249-54. 10.1016/j.vetimm.2005.05.002.

MINISTÉRIO DA AGRICULTURA. Link de acesso: http://www.agricultura.gov.br/. Acessado em Junho de 2015.

Muraille, E., Leo, O., Moser, M. (2014). TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Frontiers in Immunology. 26;5:603. 10.3389/fimmu.2014.00603.

Ojurongbe, O., Adegbayi, A.M., Bolaji, O.S., Akindele, A.A., Adefioye, O.A., Adeyeba, O.A. (2011). Asymptomatic falciparum malaria and intestinal helminths co-infection among school children in Osogbo, Nigeria. Journal of Research in Medical Sciences. 16(5):680-6.

Rebouças, M.F., Portela, R.W., Lima, D.D., Loureiro, D., Bastos, B.L., Moura-Costa, L.F., Vale, V., Miyoshi, A., Azevedo, V., Meyer; R. (2011). Corynebacterium pseudotuberculosis secreted antigen-induced specific gamma-interferon production by peripheral blood leukocytes: potential diagnostic marker for caseous lymphadenitis in sheep and goats. Journal of veterinary diagnostic investigation; 23(2); 213-220. https://doi.org/10.1177/104063871102300204

Sampaio, G.P., Vale, V.L.C., Moura-Costa, L.F., Fraga, R.E., de Melo Santos, H.H., de Sá, M.D.C.A., Bstos, B.L., Raynal, J.T., Trindade, S.C., Meyer, r. (2019). Padronização de técnicas por citometria de fluxo para avaliar Corynebacterium pseudotuberculosise células fagocitárias murinas. Pubvet; 13; 150. https://doi.org/10.31533/pubvet.v13n11a443.1-9

Shakya, K.P., Miller, J.E., Horohov, D.W. (2009) A Th2 type of immune response is associated with increased resistance to Haemonchus contortus in naturally infected Gulf Coast Native lambs. Veterinary Parasitology. 7;163(1-2):57-66. 10.1016/j.vetpar.2009.03.052.

Singh, S.K., Pal Bhadra, M., Girschick, H.J., Bhadra, U. (2008). MicroRNAs--micro in size but macro in function. FEBS Journal. 275(20):4929-44. 10.1111/j.1742-4658.2008.06624.x.

UENO, H. (1995). Cultivo quantitativo de larvas de nematódeos gastrintestinais de ruminantes com tentativa para pré-diagnóstico. Tokyo, Japan, p.138.

Vale, V., Freire, S., Ribeiro, M., Regis, L., Bahia, R., Carminati, R., Paule, B.J.A., Nascimento, I., Meyer, R. (2003). Reconhecimento de antígenos por anticorpos de caprinos naturalmente infectados ou imunizados contra Corynebacterium pseudotuberculosis. Revista de Ciências Médicas e Biológicas; 2(2); 192–200. https://doi.org/10.9771/cmbio.v2i2.4286

Whitlock, H. V. (1948). Some modifications of the McMaster eggs counting technique and apparatus. Journal Council for Scientific and Industrial Research, 21, 177-180.

Published

06/03/2024

How to Cite

SILVA, L. L. .; SÁ, M. C. A. de .; REBOUÇAS, M. C. .; FEHLBERG, I. .; ROCHA FILHO, J. T. R. .; SILVA, M. da C. .; FARIAS, A. P. F. de .; TRINDADE, S. C. .; NASCIMENTO, R. J. M. . Evaluation of factors related to th1-th2 immunomodulation in ovine co-infection with Corynebacterium pseudotuberculosis and Haemonchus contortus. Research, Society and Development, [S. l.], v. 13, n. 3, p. e0813344647, 2024. DOI: 10.33448/rsd-v13i3.44647. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/44647. Acesso em: 8 may. 2024.

Issue

Section

Agrarian and Biological Sciences