Ecosystem importance of roots: A literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v13i3.45177

Keywords:

Root biomass; Ecosystems; Carbon; Nutrients.

Abstract

Fine roots are all those with a diameter ≤2 mm. These roots are responsible for a significant portion of the primary productivity of terrestrial ecosystems, being important for providing resources to the soil microbial community and for influencing the cycling of carbon and nutrients. Despite their recognized importance, fine roots are commonly neglected in plant biomass studies. Root biomass studies are generally limited throughout the world, mainly due to the methodological complexity involved in the analytical processes. The objective of this work was to carry out a review of studies on the topic of roots, addressing the development of technologies in the analytical process and the importance of this dynamic biomass component in ecosystem processes related to carbon cycling and soil nutrients. We emphasize here the importance and need for new scientific research that seeks to develop methods of analysis, as well as to estimate the underground primary productivity, especially that of fine roots, so that the processes involved in the cycling of carbon and nutrients are better elucidated.

References

Abramoff, R. Z., & Finzi, A. C. (2015). Are above‐and below‐ground phenology in sync? New Phytologist, 205(3), 1054-1061.

Addo-Danso, S. D., Prescott, C. E., & Smith, A. R. (2016). Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: A review. Forest Ecology and Management, 359, 332-351.

Aguiar, D. R. (2018). Dinâmica e potencial de créditos de carbono na floresta manejada da Flona do Tapajós, Estado do Pará. Tese apresentada ao Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Doutor (a) em Ciências de Florestas Tropicais. Instituto Nacional de Pesquisa da Amazonia (IMPA). https://repositorio.inpa.gov.br/handle/1/4988.

Albrigo, N. S. (2021). Análise da produtividade de raízes finas para estimativas do estoque de carbono em um trecho de floresta primária de terra firme na Amazônia Ocidental. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Ambiental e Sanitária) Fundação Universidade Federal de Rondônia, Campus de Ji-Paraná. https://ri.unir.br/jspui/handle/123456789/3242.

Burke, M. K. & Raynal, D. J. (1994). Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant and soil. 162 (1), 135-46.

Cai, G., Vanderborght, J., Klotzsche, A., van der Kruk, J., Neumann, J., Hermes, N., & Vereecken, H. (2016). Construction of minirhizotron facilities for investigating root zone processes. Vadose Zone Journal, 15(9), vzj2016-05.

Cimpoiaşu, M. O., Kuras, O., Pridmore, T., & Mooney, S. J. (2020). Potential of geoelectrical methods to monitor root zone processes and structure: A review. Geoderma, 365, 114232.

Cordeiro, A. L., Norby, R. J., Andersen, K. M., Valverde‐Barrantes, O., Fuchslueger, L., Oblitas, E., & Quesada, C. A. (2020). Fine‐root dynamics vary with soil depth and precipitation in a low‐nutrient tropical forest in the Central Amazonia. Plant-Environment Interactions, 1(1), 3.

Correa, J., Postma, J. A., Watt, M., & Wojciechowski, T. (2019). Soil compaction and the architectural plasticity of root systems. Journal of experimental botany, 70(21), 6019-6034.

Erktan, A., McCormack, M. L., & Roumet, C. (2018). Frontiers in root ecology: recent advances and future challenges. Plant and Soil, 424, 1-9.

Fialho, R. C. (2016). Gases de efeito estufa, dinâmica de raízes finas e de carbono em solos de florestas plantadas de eucalipto. Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de PósGraduação em Solos e Nutrição de Plantas, para obtenção do título de Doctor Scientiae. Universidade Federal de Viçosa (UFV). https://locus.ufv.br//handle/123456789/10424.

Finér, L., Ohashi, M., Noguchi, K., & Hirano, Y. (2011). Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management, 262(11), 2008-2023.

Freire, G. A. P., Ventura, D. J., Fotopoulos, I. G., Rosa, D. M., Aguiar, R. G., & de Araújo, A. C. (2020). Dinâmica de serapilheira em uma área de floresta de terra firme, Amazônia Ocidental. Nativa, 8(3), 323-328.

Freschet, G. T., Pagès, L., Iversen, C. M., Comas, L. H., Rewald, B., Roumet, C., & McCormack, M. L. (2021). A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist, 232(3), 973-1122.

Freschet, G. T., & Roumet, C. (2017). Sampling roots to capture plant and soil functions. Functional Ecology, 31(8), 1506-1518.

Gang, H., Xue-yong, Z., Yu-qiang, L., & Jian-yuan, C. (2012). Restoration of shrub communities elevates organic carbon in arid soils of northwestern China. Soil Biology and Biochemistry, 47, 123-132.

Garré, S., Javaux, M., Vanderborght, J., Pagès, L., & Vereecken, H. (2011). Three-dimensional electrical resistivity tomography to monitor root zone water dynamics. Vadose Zone Journal, 10(1), 412-424.

Garlet, C., & Schumacher, M. V. (2020). Biomassa e comprimento de raízes finas em uma área de restauração florestal. Revista Brasileira de Gestão Ambiental e Sustentabilidade, 7(15), 351-361.

Hendrick, R. L., & Pregitzer, K. S. (1992). The demography of fine roots in a northern hardwood forest. Ecology, 73(3), 1094-1104.

Hendricks, J. J., Nadelhoffer, K. J., & Aber, J. D. (1993). Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology & Evolution, 8(5), 174-178.

Iversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B., Freschet, G. T., Kattge, J., & Violle, C. (2017). A global Fine‐Root Ecology Database to address below‐ground challenges in plant ecology. New Phytologist, 215(1), 15-26.

Johnson, M. G., Tingey, D. T., Phillips, D. L., & Storm, M. J. (2001). Advancing fine root research with minirhizotrons. Environmental and Experimental Botany, 45(3), 263-289.

Jackson, R. B., Mooney, H. A., & Schulze, E. D. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences, 94(14), 7362-7366.

King, W. L., Yates, C. F., Guo, J., Fleishman, S. M., Trexler, R. V., Centinari, M., & Eissenstat, D. M. (2021). The hierarchy of root branching order determines bacterial composition, microbial carrying capacity and microbial filtering. Communications biology, 4(1), 483.

Kulmann, M. S. S., Dick, G., Eufrade-Junior, H. J., Guerra, S. P. S., & Schumacher, M. V. (2022). Soil physical-chemical aspects influence the fine roots parameters of Pinus elliottii Engelm. stands in southern Brazil. Scientia Forestalis, 50.

Lambais, G. R. (2015). Produção e mortalidade de raízes finas em plantações de Eucalyptus grandis cultivados em Latossolos (Itatinga-SP). Tese apresentada ao Centro de Energia Nuclear na Agricultura da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Universidade de São Paulo). https://doi.org/10.11606/T.64.2016.tde-01022016-170451.

Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature communications, 6(1), 6707.

Li, X., Minick, K. J., Li, T., Williamson, J. C., Gavazzi, M., McNulty, S., & King, J. S. (2020). An improved method for quantifying total fine root decomposition in plantation forests combining measurements of soil coring and minirhizotrons with a mass balance model. Tree Physiology, 40(10), 1466-1473.

Loiola, P. P., Scherer-Lorenzen, M., & Batalha, M. A. (2015). The role of environmental filters and functional traits in predicting the root biomass and productivity in savannas and tropical seasonal forests. Forest Ecology and Management, 342, 49-55.

Ma, X. Z., Wang, X. P., Jin, Y. X., & Zhang, Y. F. (2021). Fine root production, turnover of Reaumuria songarica and soil carbon and nitrogen in Alxa steppe desert of NW China. Restoration Ecology, 29(6), e13362.

Ma, Z., & Chen, H. Y. (2016). Effects of species diversity on fine root productivity in diverse ecosystems: A global meta‐analysis. Global Ecology and Biogeography, 25(11), 1387-1396.

Mendes, L. D. S. S. (2018). Dinâmica de raízes finas em relação à disponibilidade sazonal de nutrientes e de diferentes níveis de deposição úmida em florestas tropicais. Tese de Doutorado do Curso de Pós-graduação em Ciência do Sistema Terrestre. Instituto Nacional de Pesquisas Espaciais (INPE).

Mommer, L., Padilla, F. M., van Ruijven, J., de Caluwe, H., Smit‐Tiekstra, A., Berendse, F., & de Kroon, H. (2015). Diversity effects on root length production and loss in an experimental grassland community. Functional Ecology, 29(12), 1560-1568.

Morais, V. A., Santos, C. A., Mello, J. M., Dadid, H. C., Araújo, E. J. G., & Scolforo, J. R. S. (2017). Spatial and vertical distribution of litter and belowground carbon in a brazilian cerrado vegetation. Cerne, 23, 43-52.

Morandi, P. S., Marimon, B. S., Marimon-Junior, B. H., Ratter, J. A., Feldpausch, T. R., Colli, G. R., & Phillips, O. L. (2020). Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications. Biodiversity and Conservation, 29, 1519-1536.

Nadelhoffer, K. J., & Raich, J. W. (1992). Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73(4), 1139-1147.

Nanzer, M. C., Ensinas, S. C., Barbosa, G. F., Barreta, P. G. V., de Oliveira, T. P., da Silva, J. R. M., & Paulino, L. A. (2019). Estoque de carbono orgânico total e fracionamento granulométrico da matéria orgânica em sistemas de uso do solo no Cerrado. Revista de Ciências Agroveterinárias, 18(1), 136-145.

Navroski, M. C., Biali, L. J., Bianchin, J. E., Camargo, L., & Schumacher, M. V. (2010). Quantificação de biomassa e comprimento de raízes finas em povoamento de Eucalyptus cloeziana F. Muell. Revista Brasileira de Ciências Agrárias, 5(4), 535-540.

Niinemets, Ü., & Ostonen, I. (2020). Plant organ senescence above-and belowground in trees: how to best salvage resources for new growth? Tree physiology, 40(8), 981-986.

Noguchi, K., Tanikawa, T., Inagaki, Y., & Ishizuka, S. (2017). Calculation procedures to estimate fine root production rates in forests using two-dimensional fine root data obtained by the net sheet method. Tree physiology, 37(6), 697-705.

Oliveira, P. M. R. (2017). Controle do metabolismo e desenvolvimento da orquídea epífita Catasetum fimbriatum em resposta à incidência de luz no sistema radicular. Tese apresentada ao Instituto de Biociências da Universidade de São Paulo para a obtenção de título de Coutor em Ciências, na área de Botânica. Universidade de São Paulo. https://doi.org/10.11606/T.41.2017.tde-25072017-155340.

Pathak, G. C., Joshi, H., Singh, R. D., Tewari, A., Pandey, R., & Singh, S. P. (2021). Vertical root distribution in Himalayan trees: about half of roots occur below 30 cm, the generally sampled depth. Tropical Ecology, 62, 479-491.

Pereira Júnior, L. R., Andrade, E. M. D., Palácio, H. A. D. Q., Raymer, P. C. L., Ribeiro Filho, J. C., & Pereira, F. J. S. (2016). Carbon stocks in a tropical dry forest in Brazil. Revista Ciência Agronômica, 47, 32-40.

Ramos, H. M. N., Vasconcelos, S. S., Kato, O. R., & Castellani, D. C. (2018). Above-and belowground carbon stocks of two organic, agroforestry-based oil palm production systems in eastern Amazonia. Agroforestry systems, 92(2), 221-237.

Ratuchne, L. C., Koehler, H. S., Watzlawick, L. F., Sanquetta, C. R., & Schamne, P. A. (2016). Estado da arte na quantificação de biomassa em raízes de formações florestais. Floresta e Ambiente, 23, 450-462.

Raven, F. E., & Eichhorn, S. (2014). Raven Biologia Vegetal. 8ª Edição. Rio de Janeiro.

Rother, E. T. (2007). Revisión sistemática X revisión narrativa. Acta Paulista de Enfermagem, 20, v-vi. doi:org/10.1590/S0103-21002007000200001

Sainju, U. M., & Good, R. E. (1993). Vertical root distribution in relation to soil properties in New Jersey Pinelands forests. Plant and Soil, 150, 87-97.

Silver, W. L., Neff, J., McGroddy, M., Veldkamp, E., Keller, M., & Cosme, R. (2000). Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems, 3, 193-209.

Valverde‐Barrantes, O. J., Smemo, K. A., Feinstein, L. M., Kershner, M. W., & Blackwood, C. B. (2015). Aggregated and complementary: symmetric proliferation, overyielding, and mass effects explain fine‐root biomass in soil patches in a diverse temperate deciduous forest landscape. New Phytologist, 205(2), 731-742.

Verma, A. K., Garkoti, S. C., Singh, S., Kumar, S., & Kumar, M. (2021). Fine root production and nutrient dynamics in relation to stand characteristics of chir pine mixed banj oak forests in central Himalaya. Flora, 279, 151808

Vogt, K. A., Vogt, D. J., & Bloomfield, J. (1998). Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. In: Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems: Proceedings of the 5th Symposium of the International Society of Root Research, held 14–18 July 1996 at Madren Conference Center, Clemson University, Clemson, South Carolina, USA (pp. 687-720). Springer Netherlands.

Wang, J. J., Bowden, R. D., Lajtha, K., Washko, S. E., Wurzbacher, S. J., & Simpson, M. J. (2019). Long-term nitrogen addition suppresses microbial degradation, enhances soil carbon storage, and alters the molecular composition of soil organic matter. Biogeochemistry, 142, 299-313.

Withington, J. M., Elkin, A. D., Bułaj, B., Olesiński, J., Tracy, K. N., Bouma, T. J., & Eissenstat, D. M. (2003). The impact of material used for minirhizotron tubes for root research. New Phytologist, 160(3), 533-544.

Yuan, Z. Y., & Chen, H. Y. (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Critical Reviews in Plant Sciences, 29(4), 204-221.

Yuan, Z. Y., & Chen, H. Y. (2013). Simplifying the decision matrix for estimating fine root production by the sequential soil coring approach. Acta oecologica, 48, 54-61.

Zeng, W., Xiang, W., Zhou, B., Ouyang, S., Zeng, Y., Chen, L., & Milcu, A. (2021). Positive tree diversity effect on fine root biomass: via density dependence rather than spatial root partitioning. Oikos, 130(1), 1-14.

Zhu, L., Lin, C., Huang, C., Xiong, D., Huang, J., & Chen, G. (2022). Root estimation accuracy and sampling representativeness in relation to sample size in a subtropical evergreen broad-leaved forest: comparison between soil core and minirhizotron method. New Forests, 1-18.

Ziegler, C., Kulawska, A., Kourmouli, A., Hamilton, L., Shi, Z., MacKenzie, A. R., & Johnston, I. G. (2023). Quantification and uncertainty of root growth stimulation by elevated CO2 in a mature temperate deciduous forest. Science of the Total Environment, 854, 158661.

Published

04/03/2024

How to Cite

RIBEIRO, J. A. H. .; ALMEIDA, L. H. D. de .; SOUZA, T. G. de .; LIMA, P. L. S. .; CARDOSO, S. de S. .; SOUZA, P. H. P. de .; LACERDA, F. da C. B. . Ecosystem importance of roots: A literature review . Research, Society and Development, [S. l.], v. 13, n. 3, p. e0313345177, 2024. DOI: 10.33448/rsd-v13i3.45177. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45177. Acesso em: 8 may. 2024.

Issue

Section

Agrarian and Biological Sciences