Manganese (Mn): Redox properties, coordination chemistry and biological implications
DOI:
https://doi.org/10.33448/rsd-v13i2.45186Keywords:
Manganese family/group; First transition series; Superoxide dismutase; Redox variability.Abstract
Manganese (Mn) is a first transition series metal considered highly relevant in several areas, from materials chemistry and metallurgy, through catalysis and even various sectors of bioionorganic chemistry. Manganese (Mn) presents a peculiar and extremely versatile redox behavior, it can be found in a range of different oxidation states. The control of possible oxidation states, aiming to obtain a series of applications, has been an issue to be controlled by everyone who works with the chemistry of this metal, since the physical-chemical properties of the different oxidation states can vary substantially. The present work aims to present fundamental aspects of the chemistry of the metallic element manganese (Mn), highlighting its redox variability as well as introductory topics to its coordination chemistry, covering organometallic compounds, and its relevant role in a biological environment. Therefore, this work shows an introduction to the chemistry of manganese, with special emphasis on its redox versatility and its behavior as a coordination center in metallic complexes, covering both the so-called organometallic chemistry and the biological implications of its coordination compounds. Furthermore, a comparative study is carried out with other metals, especially those from the first transition series.
References
Abbas, S., Rashid, F., Ulker, E., Zaib, S., Ayub, K., Ullah, S., Nadeem, M. A., Yousuf, S., Ludwig, R., Ali, S., & Iqbal, J. (2021). Anticancer evaluation of a manganese complex on HeLa and MCF-7 cancer cells: design, deterministic solvothermal synthesis approach, Hirshfeld analysis, DNA binding, intracellular reactive oxygen species production, electrochemical characterization and density functional theory. Journal of Biomolecular Structure and Dynamics, 39, (3), 1068-81.
Ali, B., & Iqbal, M. A. (2017). Coordination complexes of manganese and their biomedical applications. ChemistrySelect, 2(4), 1586-04.
Azadmanesh, J., & Borgstahl, G. E. O. (2018). A review of the catalytic mechanism of human manganese superoxide dismutase. Antioxidants, 7(2), 25. 10.3390/antiox7020025.
Benite, A. M. C., Machado, S. P., & Barreiro, E. J. (2007). Uma visão da química bioinorgânica medicinal. Química Nova, 30, 2062-67.
Caruso, F., Martinez, M. A., Rossi, M., Goldberg, A., Villalba, M. E. C., & Aymonino, P. J. (2009). Crystal and molecular structure of manganese (II) lapacholate, a novel polymeric species undergoing temperature-reversible metal to ligand electron transfer. Inorganic Chemistry, 48(8), 3529-34.
Chandra, S., & Kumar, U. (2005). Spectral and magnetic studies on manganese (II), cobalt (II) and nickel (II) complexes with Schiff bases. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(1-2), 219-24.
De Paula, J. C., Beck, W. F., Miller, A., Wilson, R. B., & Brudvig, G. W. (1987). Studies of the manganese site of photosystem II by electron spin resonance spectroscopy. Journal of the Chemical Society Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83, 3636-51.
Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V., & Verpoort, F. (2005). Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses. Coordination Chemistry Reviews, 249(24), 3055-74.
Duboc, C., Phoeung, T., Zein, S., Pécaut, J., Collomb, M., & Neese, F. (2007). Origin of the zero-field splitting in mononuclear octahedral dihalide MnII complexes: an investigation by multifrequency high-field electron paramagnetic resonance and density functional theory. Inorganic Chemistry, 46, (12), 4905-16.
Farias, R. F. (org.). (2005). Química de Coordenação – fundamentos e atualidades. Editora Átomo. 316p.
Fujisawa, K., & Nabika, M. (2013). Development of new polymerization catalysts with manganese (II) complexes. Coordination Chemistry Reviews, 257, (1), 119-29.
Gawin, A. Pump, E., Slugovc, C., Kajetanowicz, A, & Grela, K. (2018). Ruthenium Amide Complexes- Synthesis and Catalytic Activity in Olefin Metathesis and in Ring-Opening Polymerisation. European Journal of Inorganic Chemistry, 1766-74. https://doi.org/10.1002/ejic.201800251
Hamad, F. B., Sun, T., Xiao, S., & Verpoort, F. (2013). Olefin metathesis ruthenium catalysts bearing unsymmetrical heterocyclic carbenes. Coordination Chemistry Reviews, 257, 2274-92.
Heren, Z., Pasaoglu, H., Kastas, G., Keser, C., Yesilel, O. Z., & Buyukgungor, O. (2006). The novel Polymeric Complex of Manganese (II) with Picolinic Acid, [Mn(pic)2]n, a New Coordination Mode for Picolinic Acid. Zeitschrift für Anorganische und Allgemeine Chemie, 632, (9-8), 1578-81.
Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., & Aschner, M. (2015). Manganese is essential for neuronal health. Annual Review of Nutrition, 35, 71-08.
Huheey, J. E., Keiter, E. A., & Keiter, R. L. (1993). Inorganic Chemistry – Principles of Structure and Reactivity, 4ed. Harper Collins College Publishers.
Kallmeier, F., & Kempe, R. (2018). Manganese complexes for (de) hydrogenation catalysis: a comparison to cobalt and iron catalysis. Angewandte Chemie International Edition, 57, (1), 46-60.
Kani, I., Atlier, O., & Güven, K. (2016). Mn(II) complexes with bipyridine, phenantroline and benzoic acid: Biological and catalase-like activity. Journal of Chemical Science, 128, 523-36.
Katayama, H., & Ozawa, F. (2004). Vinylideneruthenium complexes in catalysis. Coordination Chemistry Reviews, 248, (15-16), 1703-15.
Lawrence, G. D., & Sawyer, D. T. (1978). The chemistry of biological manganese. Coordination Chemistry Reviews, 2, 173-93.
Lee, J. D. (2003). Química Inorgânica não tão Concisa, [trad. Henrique E. Toma; Koiti Araki, Reginaldo C. Rocha] Editora Edgar Blücher Ltda., São Paulo-SP, Primeira Edição (terceira reimpressão da 5aed inglesa).
Li, J., Xiong, L., Fu, L., Bo, W., Du, Z., & Feng, X. (2022). Structural diversity of Mn(II) and Cu(II) complexes based on 2-carboxyphenoxyacetate linker: Syntheses, conformation comparison and magnetic properties. Journal of Solid State Chemistry, 305, 122636.
Lima, L. M. (2007). Química medicinal moderna: desafios e contribuição brasileira. Química Nova, 30(6), 1456-68
Lozano-Vila, A. M., Monsaert, S., Bajerk, A., & Verpoort, F. (2010). Ruthenium-based olefin metathesis catalysts derived from alkynes. Chemical Reviews, 110, (8), 4865-09.
Mahan, B. M. & Myers, R. J. (1998). Química – Um Curso Universitário [trad. (4aed inglesa) Henrique E. Toma; Koiti Araki; Denise O. Silva; Flávio M. Matsumoto], Editora Edgar Blücher Ltda., São Paulo-SP.
McDowell, L. R. (1992). Minerals in Animal and Human Nutrition. Academic Press. Florida. 1-25 e 396-06.
Moreira, L. M. & Lyon, J. P. (2020). Hemoglobin, autoxidation, free radical generation, tissue injury and oxidative stress: An interesting correlation associated to the vascular accidents. Pubvet (Londrina), 14, a705-5.
Moreira, L. M., Lyon, J. P., & Teixeira, A. O. (2023a). A relação estrutura-atividade da vitamina b12 e das cobalaminas e suas correlações nutricionais. Research, Society and Development, 12, (11), e05121143658.
Moreira, L. M., Teixeira, A. O., & Lyon, J. P. (2023b). A flexibilidade dos anéis macrocíclicos e as diferentes conformações espaciais de compostos macrocíclicos metalados e não-metalados, Research, Society and Development, 12, (10), e28121043407.
Nolan, S. P. & Clavier, H. (2010). Chemoselective olefin metathesis transformations mediated by ruthenium complexes. Chemical Society Reviews, 39(8), 3305-16.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica [free e-book/repositório.ufsm.br]. Ed. UFSM. https://www.ufsm.br/app/uploads/sites/358/2019/02/Metodologia-da-Pesquisa-Científica_final.pdf
Pui, A. (2007). Manganese(II) complexes with bis (3-halo-2-hydroxy-5-methylacetophenone)ethylenediamine; structure, characterization, and redox behavior. Journal of Coordination Chemistry, 60(7), 709-18.
Romanowski, S. M. M., Machado, S. P., Friedermann, G. R. Mangrich, A. S. Hermann, M. F., & Lima, H. O. (2010). Synthesis, characterization, EPR spectroelectrochemistry studies and theoretical calculations of manganese (II) complexes with the ligands H3bpeten and H3bnbpeten. Journal of the Brazilian Chemical Society, 21, (5), 842-50.
Sadeek, S. A. (2005). Synthesis, thermogravimetric analysis, infrared, electronic and mass spectra of Mn(II), Co(II) and Fe(III) norfloxacin complexes. Journal of Molecular Structure, 753, (1-3), 1-12.
Senft, L., Moore, J. L, Franke, A., Fisher, K. R., Scheitler, A., Zahl, A., Puchta, R., Fehn, D., Ison, S., Saden, S., Ivanovic-Burmazovic, I., & Goldsmith, C. R. (2021). Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling. Chemical Science, 12, (31), 10483-00.
Shriver, D. F., Atkins, P. W., Overton, T. L., Rourke, J. P., Weller, M. T., & Armstrong, F. A. (2008). Química Inorgânica [Trad. Roberto B. Farias; Cristina M. P. dos Santos], 4ed. Artmed Editora S. A., Porto Alegre-RS.
Syiemlieh, I., Kumar, A., Kurbah, S. D., De, A. K., & Lal, R. A. (2018). Low-spin manganese (II) and high-spin manganese (III) complexes derived from disalicylaldehyde oxaloyldihydrazone: Synthesis, spectral characterization and electrochemical studies. Journal of Molecular Structure, 1151, 343-52.
Tao, P., Liu, S., & Wong, W. (2020). Phosphorescent manganese (II) complexes and their emerging applications. Advanced Optical Materials, 8(20), 2000985.
Valyaev, D. A., Lavigne, G., & Lugan, N. (2016). Manganese organometallic compounds in homogeneous catalysis: Past, present and prospects. Coordination Chemistry Reviews, 308, 191-35.
Vougioukalakis, G. C. & Grubbs, R. H. (2010). Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chemical Reviews, 110(3), 1746-87.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Leonardo Marmo Moreira; Juliana Pereira Lyon; Cid Pereira; Roberto de Souza Silva; Mario Sérgio Schultz
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.