Hand sanitizer gel formulations: Influence of polymer type on the rheological properties

Authors

DOI:

https://doi.org/10.33448/rsd-v13i4.45531

Keywords:

Alcohol gel; COVID-19; Gelling agents; Polymers; Stability.

Abstract

COVID-19 increased the demand for alcohol-based hand sanitizer in establishments. The present study aimed to characterize different polymers and/or polymer mixtures with the potential to be used to produce alcohol-based gel hand sanitizers and evaluate the different formulations of alcohol gel as to their rheological properties. Polymers and polymer blends (natural and/or synthetic) were characterized by DSC and FTIR/NIR analysis. Six were polymers or blends of polymers efficient to production of this product in the concentration of 70% ethanol (w/w). Alcohol-based hand sanitizer gel formulations were stored at two different temperatures (25 °C and 40 °C) and subjected to rheological analysis over the storage time (0, 7, 14, and 28 days). The rheological profile indicated a behavior of pseudoplastic fluid of the samples, and they remained stable throughout the days of storage at 25 °C. Formulations containing natural polymers derived from cellulose are good alternatives to replace the carbomer gelling agent, with limitations related to the reduction of the gel apparent viscosity.

References

Blanco, M., Coelho, J., Iturriaga, H., Masposh, S., de la Pezuela, C., & Russo, E. (1994). Control analysis of a pharmaceutical preparation by near infrared reflectance spectroscopy. A comparative study of a spinning module and fibre opctic probe. Analytica Chimica Acta, 298, 183-191.

Brasil. Nota Técnica Nº 3/2020/SEI/DIRE3/ANVISA: Orientações gerais sobre a doação de álcool 70%. (2020, march 24). Brasília: Agência Nacional de Vigilância Sanitária.

Brasil. Ministério da Saúde (2019). Formulário nacional da farmacopeia brasileira. Brasília: Agência Nacional de Vigilância Sanitária.

Brasil. Ministério da Saúde (2012). Formulário nacional da farmacopeia brasileira. Brasília: Agência Nacional de Vigilância Sanitária.

Brasil. Resolução da Diretoria Colegiada (RDC) nº 46. (2002, february 20). Brasília: Agência Nacional de Vigilância Sanitária.

Cerná, M., Barros, A. S., Nunes, A., Rocha, S. M., Delgadillo, I., Copíková, J., & Coimbra, M. A. (2003). Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydrate Polymers, 51 (4), 383–389.

Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Souza, B. W. S., Teixeira, J. A., & Vicente, A. A. (2011). Galactomannans use in the development of edible films/coatings for food applications. Trends in Food Science & Technology, 22 (12), 662-671.

Corrêa, N. M., Camargo Júnior, F. B., Ignácio, R. F., & Leonardi, G. R. (2005). Avaliação do comportamento reológico de diferentes géis hidrofílicos. Revista Brasileira de Ciências Farmacêuticas, 41 (1). https://doi.org/10.1590/S1516-93322005000100008.

Correia, L. M. P. C., Justi, J. S., & Andersen, M. V. (2013, april 19). Retrieved from https://www.saude.pr.gov.br/sites/default/arquivos_restritos/files/documento/2020-05/alcool_gel.pdf

Figueiró, S. D., Góes, J. C., Moreira, R. A., & Sombra, A. S. B. (2004). On the physicochemical and dielectric properties of glutaraldehyde crosslinked galactomannan–collagen films. Carbohydrate Polymers, 56 (3), 313–320.

Goldstein, A. M., Alter, E. N., & Seaman, J. K. (1973). Guar gum In Whistler, R. L, (Eds), Industrial gums (pp. 303–321). New York: Academic Press.

Hashemi, M. M., Aminlari, M., & Moosavinasab, M. (2014). Preparation of and studies on the functional properties and bactericidal activity of the lysozyme–xanthan gum conjugate. Food Science and Technology, 57 (2), 594-602.

Jansson, P. E., Kenne, L., & Lindberg, B. (1975). Structure of the extracellular polysaccharide from Xanthomonas campestres. Carbohydrate Research, 45 (1), 275-282.

Kang, H., Liu, R., & Huang, Y. (2016). Cellulose-Based Gels. Macromolecular Chemistry and Physics, 217 (12), 1322-1334. DOI: 10.1002/macp.201500493

Khonsari, F., Zakeri-milani, P., & Jelvehgari, M. (2014). Formulation and evaluation of in-vitro characterization of gastic-mucoadhesive microparticles/discs containing metformin hydrochloride. Iranian Journal of Pharmaceutical Research, 13(1), 67-80.

Kumar, Y. M., Kayyarapu, B., Neeruganti, O. G., & Chekuri, R. (2018). Thermal and Conductivity Studies of VO2+ Doped Methacrylic Acid-Ethyl Acrylate (MAA: EA) Copolymer Films. Materials Research, 21 (1), 1516-1439. https://doi.org/10.1590/1980-5373-mr-2017-0328.

Mou, D., Chen, H., Du, D., Mao, C., Wan, J., Xu, H., & Yang, X. (2008). Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. International Journal of Pharmaceutics, 353 (1-2), 270–276. 10.1016/j.ijpharm.2007.11.051.

Pavia, D. L., Lampman, G. M., & Kriz, G. S. (2001). Introduction to Spectroscopy. Brooks/Cole-Thomson Learning.

Perinelli, D. R., Berardi, A., Bisharat, L., Cambriani, A., Ganzetti, R., Bonacucina, G., Cespi, M., & Palmieri, G. F. (2021). Rheological properties of cellulosic thickeners in hydro-alcoholic media: The science behind the formulation of hand sanitizer gels. International Journal of Pharmaceutics, 604, 120769. https://doi.org/10.1016/j.ijpharm.2021.120769.

Pooja, D., Panyaram, S., Kulhari, H., Rachamalla, S. S., & Sistla, R. (2014). Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and citotoxicity. Carbohydrate Polymers, 110, 1-9.

Regiani, A. M., Tambelli, C. E., Pawlicka, A., Curvelo, A. A. S., Gandini, A., Lenest, J. F., & Donoso, J. P. (2000). DSC and solid state NMR characterization of hydroxyethylcellulose/polyether films. Polymer International, 49, 960-964.

Safitri, F. I., Nawangsari, D., & Febrina, D. (2021). Overview: Application of Carbopol 940 in Gel. Proceedings of the International Conference on Health and Medical Sciences (AHMS 2020). Advances in Health Sciences Research, 34. https://doi.org/10.2991/ahsr.k.210127.018.

Sandeep, C., Deb, T. K., & Shivakumar, H. G. (2014). Cationic guar gum polyelectrolyte complex micro particles. Journal of Young Pharmacists, 6(4), 11-19.

Sathiyanarayanan, P., Karunakaran, R. J., Gomathi, T., & Sudha, P. N. (2015). Synthesis and characterization of carboxymethyl cellulose/polyethylene glycol/montmorillonite clay blends. International Journal of Novel Trends in Pharmaceutical Sciences, 5(2), 36-41.

Shalviri, A., Liu, Q., Abdekhodaie, M. J., & Wu, X. W. (2010). Novel modified starch–xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization. Carbohydrate Polymers, 79 (4), 898–907.

Silverstein, R. M. & Webster, F. X. (2000). Identificação Espectrométrica de Compostos Orgânicos. Rio de Janeiro: LTC Editor.

Silverstein, R. M., Bassler, G. C., & Morril, T. C. (1997). Spectrometric Identification of Organic Compounds. New York: John Wiley.

Singh, R. K. & Khatri, O. P. (2012). A scanning electron microscope based new method for determining degree of substitution of sodium carboxymethyl cellulose. Journal of Microscopy, 246 (1), 43 -52.

Wang, Z., Zhao, Y., Zhou, L., Xu, L., Diao, G., & Liu, G. (2020). Effects of hydroxyethyl methyl cellulose ether on the hydration and compressive strength of calcium aluminate cement. Journal of Thermal Analysis and Calorimetry, 140 (2), 545-553.

Yang, X. H. & Zhu, W. L. (2007). Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose, 14, 409–417.

Downloads

Published

17/04/2024

How to Cite

RODRIGUES, G. B. C. .; OLIVEIRA FILHO , J. G. de .; JAKELAITIS, A. .; SILVA, E. C. da .; PLACIDO, G. R. .; MARCIONILIO, S. M. L. de O. .; BITENCOURT, R. G. Hand sanitizer gel formulations: Influence of polymer type on the rheological properties. Research, Society and Development, [S. l.], v. 13, n. 4, p. e6313445531, 2024. DOI: 10.33448/rsd-v13i4.45531. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/45531. Acesso em: 16 may. 2024.

Issue

Section

Engineerings