An approach to Magneto-Rheological Fluids and their technological applications

Authors

DOI:

https://doi.org/10.33448/rsd-v13i6.46107

Keywords:

Magnetorheological fluids; Reversibly controlled; Technological applications; Marketplace worldwide.

Abstract

The objective of this work is to present documents published in the literature on magnetorheological fluids (FMRs), reports from 3 multinational companies operating in the (FMRs) market, pointing out: consumption by countries, abundantly, segments by type, by sector, CAGR (a of the ways most used by the market to analyze the potential return on an investment), and the potential in financial terms that this market aims to achieve by 2031. Magnetorheological fluids are materials belonging to the Materials Science class, and classified as Intelligent Matters and Composites. Generally they are arranged in paste form, with oil or water, magnetic particles that have an average diameter of several micrometers. The (FMR) can be reversibly controlled by a magnetic field and has the ability to change its state from liquid to semi-solid in milliseconds, making it attractive for technological applications. Starting from Rabinow (1947), several authors have been developing studies in the field of (FMRs) in the various areas of engineering, medicine and robotics in an integrated manner, including researchers who have synthesized magnetorheological fluids in external and internal laboratories (Universities), and presented recent advances for future commercial applications. Data collection for this work is based on qualitative, documentary research with narrative review. The world market for magnetorheological fluids has been very prominent over the last decade, with negative points being: high investment cost in relation to other fluids, scarcity of raw materials, lack of technical knowledge on the part of the consumer in relation to the advanced properties of the material consumer for technological applications.

References

Aruna, M. N., Rahman, M. R., Joladarashi, S. & Kumar, H., (2019). Influence of additives on the synthesis of carbonyl iron suspension on rheological and sedimentation properties of magnetorheological (MR) fluids. In: Mater. Res. Express 6 086105.

Andrade, R. M. (2018). Joelho magneto-reológico para próteses transfemorais: prototipagem digital, fabricação e identificação experimental. (Tese de Doutorado). UFMG- Universidade Federal de Minas Gerais- MG. http://hdl.handle.net/1843/.

Anjos, P. H. A. (2019). Formação de padrões em fluidos viscosos confinados. (Tese Doutorado), Universidade Federal de Pernambuco. CCEN. Física. Recife.

Ashtiani, M., Hashemabadi, S. H. & Ghaffari, A., (2015). “A review on the magnetorheological fluid preparation and stabilization”, J. Magnetism Magn. Materials, 374, 716-730. 10.1016/j.jmmm.2014.09.020.

Barnes, H. A., Hutton, J. F. & Walters, K., (1989). An Introduction to Rheology. Elsevier Science Publishers B.V. All rights reserved. 0-444-87140-3.

Barnes, H. A. (1999). The yield stress: a review or ‘π’-everything fl ows?. In: J. Non-Newtonian Fluid Mech., 81(I1–2), 133-78. https://doi.org/10.1016/S0377-. https://www.sciencedirect.com/

Bombard, A. J. F. (2005). Suspensões Magneto-Reológicas de pós de ferro carbonilo: um estudo da influência das propriedades magnéticas e do tamanho das partículas. (Tese de Doutorado). Universidade Estadual de Campinas.

Bombard, A. J. F., Antunes, L. S. & Gouvea, D., (2009). Redispersibility in magnetorheological fluids: surface interactions between iron poder and wetting additives J. Phys.: Conf. Series 149 012038

Bombard A. J. F., & De Vicente, J., (2012). Boundary lubrication of magnetorheological fluids in PTFE/Steel point contacts Wear 296 484–90.

Bombard, A. J. F., & De Vicente, J.: (2012). Thin-film rheology and tribology of magnetorheological fluids in isoviscous-EHL contacts. Tribol.Lett. 47, 149–162.

Bombard, A. F. J., Gonçalves, F. R., Morillas, J.R., & De Vicente, J. (2014). Magnetorheology of dimorphic magnetorheological fluids based on nanofibers. Smart Materials and Structures, 23(12). 10.1088/0964-1726/23/12/125013.

Bombard, A. J.F., Gonçalves, F. R., Shahrivar, K., Ortiz, A. L. & De Vicente, J. (2015). Tribological behavior of ionic liquid-based magnetorheological fluids in steel and polymeric point contacts. Tribology International. 81, 309-20. https://doi.org/10.1016/j.".

Bretas, R. E. S. & D'Avila, M. A., (2005). " Reologia de polímeros fundidos" (2a ed.), Edufscar.

DBMR Nucleus Solutions Data Bridge Market, (2024). https://www.databridgemarketresearch.com/pt/reports/global-magneto-rheological-fluids-market

De Vicente, J., V., Klingenberg, D. J., & Roque H. Á., (2011). “Magnetorheological fluids: a review”, Soft Matter, 7(8), 3701-3710.

1039/c0sm01221a

Garcia, M, J., & Wickenheiser, E. A. (2005)., “Horner GC. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism”, 232–40.

Global Magnetorheological Fluid Market Research Report, (2024). https://reports.valuates.com/market-reports/QYRE-Auto-32H1538/global-magnetorheological-fluid.

Goodwin, J., W., & Hughes, R., W., (2008). Rheology for Chemists An Introduction, (2a ed.), Edition Published by The Royal Society of Chemistry,

Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK. Registered Charity Number 207890

Guerreiro, D. J. & Batocchio (s.d). A., Estudo, Caracterização e Potencial de Aplicação do Fluido Magneto-reológico: Magneto reológico - Amortecedores Inteligentes -Fluido. Unicamp.

Hu, Z., Yan, H., Jianjian, Y., Xuemei, W., Rongsheng, Y., (2014). Effect of Components on Friction Property of Carbonyl Iron-Based Magnetorheological Fluid. Journal for Science & Engineering (Springer Science & Business Media B.V.), Arabian, 39(10), 7355. 10.1007/s13369-014-1358-2

Jani, J. M., Leary, M., Subic, A., & Gibson, M. A., (2013). “A Review of Shape Memory Alloy Research, Applications and Opportunities.” In: Materials and Design. 56 (2014)1078-1113.

Kanda, M., Kaide, A., Saeki, T., & Tochigi, H., (2019). Preparation and Rheology of Magnetorheological Fluid Using Six Kinds of Fumed Silica as Stabilizing Additives https://doi.org/10.1051/matecconf/202133302006.

Karamodin, A.; Kazemi, H. H, & Akbarzadeh, M.R. (2008). Semi-active control of structures using neuro-predictive algorithm for mr dampers. Structural Control and Health Monitoring, 278.

Karnopp, D., Crosby, M. J., & Harwood, R., (1974). Vibration control using semi-active force generators. Journal of Manufacturing Science and Engineering, American Society of Mechanical Engineers, 96(2), 619–626.

Kervin, Jr. E. M., (1959). “Damping of Flexural Waves by a Constrained Viscoelastic Layer”. In: Journal of Acoustical Society of America, 31(7), 952-962.

Lai, C. Y., & Liao, W.-H., (2002). Vibration control of a suspension system via a magnetorheological fluid damper. Journal of Vibration and Control, SAGE Publications, 8(4), 527–547.

Mabe, J. H., Cabell, R., & Butler, G., (2005). “Design and control of a morphing chevron for takeoff and cruise noise reduction, In: Proceedings of the 26th Annual AIAA Aeroacoustics Conference, Monterey, CA, EUA.

Mabe, J. H., Calkins, F. T., Bushnell, G. S., Bieniawski, S. R., (2011). “Aircraft systems with shape memory alloy (SMA) actuators, and associated methods”. In: US Patent 7878459B2, The Boeing Co.

Modesto, T. L.L., Zugaldía, A., González-Caballero, F., & Durán, J. D. G., (2006). Sedimentation and Redispersion phenomena in iron-based magnetorheological fluids, J. Rheol. 50, 543–560 https://doi.org/10.1122/1.2206716.

Modesto, T. L.L., Ana, G.R., Juan, D. G. D., & Fernando, G. C., (2008). “Preparation and Characterization of Iron-Based Magnetorheological Fluids Stabilized by Addition of Organoclay Particles”, Langmuir, 24(14), 7076–7084.

Mahmoodi, P., (1969). “Structural Dampers”, In: Journal of Structural Division, ASCE, 95(ST8), 1661-1672.

Mahmoodi, P., (1972). “Structural Dampers”, In: Journal of Structural Engineering, ASCE, (96), 1661-1672.

Manuel, J. G. F., Bombard, A. J. F., &Weeks, E. R., (2023). Effect of polydispersity in concentrated magnetorheological fluids. Smart Materials and Structures, Editora IOP Publishing, 32(4)., 045014.

Manzo, J., Garcia, E., & Wickenheiser, A., (2005). “Horner GC. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism”, 232–40.

Mezger, T. G. (2014). The Rheology Handbook. (4a ed.), Hanôver: Vincentz Network, European Coatings Library.

Moraes, Y. J. O., (2021). Controle passivo de vibrações em sistema estrutural utilizando molas superelásticas: Comparação entre técnicas e análise da influência de variáveis. (Tese de Doutorado), 254f. L:1.

Morais, J., Gil, de M., Santos, C., Campos, C., A., & Candeias, P., (2017). “Shape Memory Alloy Based Dampers for Earthquake Response Mitigation” In: Structural Integrity Procedia. 5, 705 – 712.

Morillas, J. R., Bombard, A.J.F., & Vicente, R., (2016). Preparation and characterization of magnetorheological fluids by dispersion of carbonyl iron microparticles in PAO/1-octanol, Smart Mater. Struct. 25 015023. http://dx.doi.org/10.1088/0964-1726/25/1/015023.

Moura, E. D. A. (2003). Estudo de Suspensões Passivas, Semi-Ativa MR e Ativa. (Dissertação Mestrado) - Universidade Federal de Itajubá, Minas Gerais.

Moutinho, C. M. R., (2007). “Controle de Vibrações em Estruturas de Engenharia Civil”. (Tese de Doutorado em Engenharia Civil) - Faculdade de Engenharia da Universidade do Porto. Porto, Portugal: FEUP, p.394.

Oliveira, S. de A., & Savi, M. A., (2013). Os Materiais Inteligentes e suas aplicações. (Tese de Doutorado em Engenharia Mecânica) - Universidade Federal do Rio de Janeiro: “Modelagem Termomecânica de Ligas com Memórias de forma em um contexto tridimensional”.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica. UFSM.

Pillai, M. V., Kazerooni, H., & Hurwich, A., (2011). Design of a Semi-Active Knee-Ankle Prosthesis., IEEE International Conference on Robotics and Automation, Shanghai, China.

Rabinow, J. J., (1948). “The Magnetic Fluid Clutch,” J. AIEE Trans., 67, 1308–1315.

Rocha, J. H. R. (2021). Avaliação de argilas organomodificadas e dispersantes no Preparo de suspensões magnetoreológicas. (Dissertação de Mestrado) - Universidade Federal de Itajubá-MG.

Rocha, J. H. R., J. G. F. Manuel., & Bombard., A. J. F. (2024). Synthetic oil gels with organoclays in the formulation of magnetorheological fluids. In: Journal of Intelligent Material Systems and Structures. 10.1177/1045389X241238781.

Ross, D., Ungar, E. E. & Kervin Jr, E. M., (1959). “Damping of Plate Flexural Vibrations by Means of Viscoelastic Layer”. In: Structural Damping: ASME, New York, USA, 49-99.

Roupec, J., Berka, P., Mazůrek, I., Strecker, Z., Kubík, M., Macháček, O & Andani, M. T., (2017). A novel method for measurement of MR fluid sedimentation and its experimental verification. Article in Smart Materials and Structures 10.1088/1361-665X/aa83f2.

Roupec, J., Michal, L., Strecker, Z., Kubík, M., Macháček, O. & Choi, H. J., (2021). Smart Mater. Struct. 30 027001. https://doi.org/10.1088/1361-665X/abd345. 

Rother, E. T., (2007). Revisão sistemática x revisão narrativa. Acta paul. enferm. 20 (2). https://doi.org/10.1590/S0103-.

Sánchez-Alonso, M. A., Camporredondo-Saucedo, J. E., Castruita-Ávila, L.G., Equihua-Guillén, F., García-Lara, A. M., & Muñoz-Zertuche, A. A., (2020). “Magnetorheological fluids: synthesis, properties and applications”, In: Journal of Engineering SciencesRespuestas, 25(1), 184-194, https://doi.org/10.22463/0122820X.2436.

Sousa, S. R. G., Santos, M. P., & Bombard, A. J. F., (2019). Magnetorheological gel based on mineral oil and polystyrene-b-poly(ethene-co-butadiene)-b-polystyrene”, Smart Mater. Struct., 28, 105016.

Smith, D., Margrit, R. M., Roy, K. D. & Elliot, S. B. (2005) Outcome Assessment of a MR Microprocessor-Controlled Knee. Microprocessor Knee Symposium – American Academy of Orthotists & Prosthetists.

Sousa, S. R. G., Leonel, A. & Bombard, A. J. F. (2020). Smart Mater. Struct. 29 055039(16pp). https://doi.org/10.1088/1361-665X/ab6abe.

Sousa, S. R. G., & Bombard, A. J. F., (2019). “Redispersibility and its relevance in the formulation of magnetorheological fluids”, in: Magnetorheological Materials and their Applications, S. B. Choi and W. H. Li, Eds. London: The Institution of Engineering and Technology, 2019, pp. 1-18.

Sousa, S. R. (2019). Magneto Reologia: Caracterização de Fluidos e Géis, (Tese de Doutorado). Universidade Federal de Itajubá-MG.

Sousa, A. S.; Oliveira, G. S.; & Alves, L. H., (2021). A pesquisa bibliográfica: princípios e fundamentos. Cadernos da Fucamp, 20(43). https://revistas.fucamp.edu.

Steffe, J. F., (1996). Rheological Methods in food process engineering, 2.ed. Ed. Freeman Press, East Lansing, Michigan State, USA. p.418.

Szabó, D., Szeghy, G., & Zríny, M., (1998). “Shape transiction of magnetic field sensitive polymer gels”, Macromolecules 31, 6541 – 6548.

Szabó D. & Zríny M., (2000). “Muscular contraction mimiced by magnetic gels' ', em: 7 th International Conference on Electrorheological Fluids and Magnetorheological Suspensions - Honolulu, Hawai, USA, 19 - (23 Julho de 1999), Editor: R. Tao, World Scientific.

The National Institute of Standards and Technology (NIST) is an agency of the U.S. DepartmentofCommerce.(2005). Disponível em: https://web.archive.org/web/20150910033446/http://www.nist.gov/.

Torres, T. R., (2016). Controle Preditivo aplicado a um modelo não linear de suspensão automotiva semiativa com amortecedor magneto-reológico. (Dissertação de Mestrado), Salvador.

Tusset, Â. M., (2008). Controle Ótimo Aplicado em Modelo de Suspensão Veicular Não-linear Controlada através de Amortecedor Magneto-reológico. (Tese de Doutorado), Universidade Federal do Rio Grande do Sul, Porto Alegre.

Vikram, G. K., Kolekar, S. & Madivalar, C., (2015). Preparation of Magnetorheological Fluids Using Different Carriers and Detailed Study on Their Properties/ American Journal of Nanotechnology, 6(1), 7.15

Wang, D. & Hou, Y., (2013). Design and experimental evaluation of a multidisk magnetorheological fluid actuator. Journal of Intelligent Material Systems and Structures, 24, 640.

Xu, L.-h. & Li, Z.-x., (2012). Semi-active predictive control strategy for seismically excited structures using mrf-04k dampers. Journal of Central South University, Springer, 19, 2496–2501.

Zhang, P., Lee, K. H. & Lee, C. H. (2016). Friction behavior of magnetorheological fluids with different material types and magnetic field strength. Chin. J. Mech. Eng. 29, 84–90. https://doi.org/10.3901/CJME.2015.1126.139

Zion Market Research, (2024). https://www.zionmarketresearch.com/report/magneto-rheological-fluid-market

Published

22/06/2024

How to Cite

BARBOSA, K. F. S. . An approach to Magneto-Rheological Fluids and their technological applications. Research, Society and Development, [S. l.], v. 13, n. 6, p. e12913646107, 2024. DOI: 10.33448/rsd-v13i6.46107. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46107. Acesso em: 2 jan. 2025.

Issue

Section

Engineerings