Peptides with immunomodulatory properties (Imuno TF®) increase the frequency of the CD8+ T cell population in vitro

Authors

DOI:

https://doi.org/10.33448/rsd-v13i8.46597

Keywords:

Immune system; Immune peptides; Dietary supplement; Th1 response.

Abstract

Imuno TF® is a food supplement composed of oligo- and polypeptides with roles in the immune system. It has been previously demonstrated that Imuno TF® positively regulated Th1 cytokines while decreasing Th2 cytokines (reduced secretion of IL-10 and increased secretion of IL-6 and TNF-α). Here we aimed to investigate the actions of Imuno TF® on the frequency of stimulated CD8+ and CD4+ T-cell populations and their cytokine productions. Human lymphocyte cultures were used for that, and IL-2, IFN-γ, IL-4, IL-5, IL-7, IL-13, and IL-35 were quantified by ELISA and RT qPCR. The frequency of CD4+ and CD8+ populations was investigated through flow cytometry. We observed an increased frequency of CD8+ T-cells after the combined stimulation of cells with Imuno TF® and ConA compared to controls.  No differences were observed regarding the frequency of CD4+ T-cells. In addition, a significant increase in IL-2, IL-7, and IFN-γ levels was observed, while IL-4, IL-5, and IL-13 presented reduced levels. No alterations were observed in IL-35 levels. Our results suggest that the Imuno TF® can potentially increase the CD8+ T-cell population by positively regulating cytokines associated with Th1 response and increased IL-7 levels while reducing Th2 cytokine-mediated immune responses.

References

Bachmann, M. F., Wolint, P., Walton, S., Schwarz, K. & Oxenius A. (2007). Differential role of IL-2R signaling for CD8+ T cell responses in acute and chronic viral infections. Eur J Immunol. 37(6), 1502-12. 10.1002/eji.200637023

Barata, J. T., Durum, S. K. & Seddon, B. (2019). Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol. 20(12), 1584-1593. 10.1038/s41590-019-0479-x

Bello, R. O., Chin, V. K,. Abd Rachman Isnadi, M. F., Abd Majid, R., Atmadini Abdullah, M., Lee, T.Y., Amiruddin Zakaria, Z., Hussain, M. K. & Basir, R. (2018). The Role, Involvement and Function(s) of Interleukin-35 and Interleukin-37 in Disease Pathogenesis. Int J Mol Sci. 19(4), 1149. 10.3390/ijms19041149

Brooks, D. G., Tishon, A., Oldstone, M. B. A. & Mcgavern, D. B. (2021). Prevention of CD8 T Cell Deletion during Chronic Viral Infection. Viruses. 13(7), 1189. 10.3390/v13071189

Coyle, A. J, Erard, F., Bertrand, C., Walti, S., Pircher, H. & Le Gros, G. (1995). Virus-specific CD8+ cells can switch to interleukin 5 production and induce airway eosinophilia. J Exp Med. 181(3), 1229-33. 10.1084/jem.181.3.1229

Ferreira, A. O., Polonini, H. C. & Dijkers, E. C. F. (2020). Postulated Adjuvant Therapeutic Strategies for COVID-19. J Pers Med. 10(3), 80. 10.3390/jpm10030080

Hernández, M. D., Urrea, J. & Bascoy L. (2021). Evolution of COVID-19 patients treated with a combination of nutraceuticals to reduce symptomatology and improve prognosis: a multi-centered, retrospective cohort study, J Clin Rev C Rep. 6:662–701. org/10.33140/JCRC.06.07.01

Jiang, H., Zhang, T., Yan, M. X. & Wu, W. (2019). IL-35 inhibits CD8+ T cells activity by suppressing expression of costimulatory molecule CD28 and Th1 cytokine production. Transl Cancer Res. 8(4), 1319-1325. 10.21037/tcr.2019.07.30

Laterre, P. F., François, B., Collienne, C., Hantson, P., Jeannet, R., Remy, K. E. & Hotchkiss, R. S. (2020). Association of Interleukin 7 Immunotherapy With Lymphocyte Counts Among Patients With Severe Coronavirus Disease 2019 (COVID-19). JAMA Netw Open. 3(7), e2016485. 10.1001/jamanetworkopen

Macdonald, A., Lam, B., Lin, J., Ferrall, L., Kung, Y. J., Tsai, Y. C., Wu, T. C. & Hung, C. F. (2021). Delivery of IL-2 to the T Cell Surface Through Phosphatidylserine Permits Robust Expansion of CD8 T Cells. Front Immunol. 12:755995. 10.3389/fimmu.2021.755995

Mackall, C. L., Fry, T. J. & Gress, R. E. (2011). Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol. 11(5), 330-42. 10.1038/nri2970

Mais, M., De Vinci, C. & Baricordi, O. R. (1996). Transfer factor in chronic mucocutaneous candidiasis. Biotherapy. 9(1-3), 97-103. 10.1007/BF02628665

Milich, D. R., Chen, M. K., Hughes, J. L. & Jones, J. E. (1998). The secreted hepatitis B precore antigen can modulate the immune response to the nucleocapsid: a mechanism for persistence. J Immunol. 160(4), 2013-21.

Mitchell, D. M., Ravkov, E. V. & Williams, M. A. (2010). Distinct roles for IL-2 and IL-15 in the differentiation and survival of CD8+ effector and memory T cells. J Immunol. 184(12), 6719-30. 10.4049/jimmunol.0904089

Nguyen, V., Mendelsohn, A. & Larrick, J. W. (2017). Interleukin-7 and Immunosenescence. J Immunol Res. 2017:4807853. 10.1155/2017/4807853

Olson, B. M,, Sullivan, J. A, & Burlingham, W. J. (2013). Interleukin 35: a key mediator of suppression and the propagation of infectious tolerance. Front Immunol. 4:315. 10.3389/fimmu.2013.00315

Othman, S. I., Nayel, M. A., Alwaele, M. A., Al Fassam, H., Abu-Taweel, G. M., Altoom, N. G., Almalki, A. M., Allam, A. A., Alturki, A. M. & El-Shabasy, R. M. (2021). Immunology and controlling of coronaviruses; the current enemy for humanity: A review. Int J Biol Macromol. 193(Pt B), 1532-1540. 10.1016/j.ijbiomac.2021.10.216

Polonini, H., Gonçalves, A. E. S. S., Dijkers, E., & Ferreira, A. O. (2021). Characterization and Safety Profile of Transfer Factors Peptides, a Nutritional Supplement for Immune System Regulation. Biomolecules. 11(5), 665. 10.3390/biom11050665

Raise, E., Guerra, L., Viza, D., Pizza, G., De Vinci, C., Schiattone, M. L., Rocaccio, L., Cicognani, M. & Gritti, F. (1996). Preliminary results in HIV-1-infected patients treated with transfer factor (TF) and zidovudine (ZDV). Biotherapy. 9(1-3), 49-54. 10.1007/BF02628656

Rha, M. S. & Shin, E. C. (2021). Activation or exhaustion of CD8+ T cells in patients with COVID-19. Cell Mol Immunol. 18(10), 2325-2333. 10.1038/s41423-021-00750-4

Rocha Oliveira, C., Paula Vieira, R., De Oliveira Ferreira, A., De Souza Schmidt Gonçalves, E., Polonini, H. (2021). Immunoregulatory effects of Imuno TF® (transfer factors) on Th1/Th2/Th17/Treg cytokines. J Clin Exp Imm. 6:421–431. 10.1101/2020.11.06.371435

Rubinstein, M. P., Lind, N. A., Purton, J.F., Filippou, P., Best, J. A., Mcghee, P. A., Surh, C. D., Goldrath, A. W. (2008). IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood. 112(9), 3704-12. 10.1182/blood-2008-06-160945

Sa, Q., Woodward, J. & Suzuki, Y. (2013). IL-2 produced by CD8+ immune T cells can augment their IFN-γ production independently from their proliferation in the secondary response to an intracellular pathogen. J Immunol. 190(5), 2199-207. 10.4049/jimmunol.1202256

Sercan Alp, Ö., Durlanik, S., Schulz, D., McGrath, M., Grün, J. R., Bardua, M., Ikuta, K., Sgouroudis, E., Riedel, R., Zehentmeier, S., Hauser, A. E., Tsuneto, M., Melchers, F., Tokoyoda, K., Chang, H. D., Thiel, A. & Radbruch, A. (2015). Memory CD8(+) T cells colocalize with IL-7(+) stromal cells in bone marrow and rest in terms of proliferation and transcription. Eur J Immunol. 45(4), 975-87. 10.1002/eji.201445295

Steele, R. W., Myers, M. G. & Vincent, M. M. (1980). Transfer factor for the prevention of varicella-zoster infection in childhood leukemia. N Engl J Med. 303(7), 355-9. 10.1056/NEJM198008143030702

Su, L. C., Liu, X. Y., Huang, A.F . & Xu, W. D. (2018). Emerging role of IL-35 in inflammatory autoimmune diseases. Autoimmun Rev. 17(7), 665-673. 10.1016/j.autrev.2018.01.017

Tsai, S. L., Liaw Y. F., Chen, M. H., Huang C. Y. & Kuo G. C. (1997). Detection of type 2-like T-helper cells in hepatitis C virus infection: implications for hepatitis C virus chronicity. Hepatology. 25(2), 449-58. 10.1002/hep.510250233

Vranjkovic, A., Crawley, A. M., Patey, A. & Angel, J. B. (2011). IL-7-dependent STAT-5 activation and CD8+ T cell proliferation are impaired in HIV infection. J Leukoc Biol. 89(4), 499-506. 10.1189/jlb.0710430

Whitmire, J. K., Tan, J. T. & Whitton, J. L. (2005). Interferon-gamma acts directly on CD8+ T cells to increase their abundance during virus infection. J Exp Med. 201(7), 1053-9. 10.1084/jem.20041463

Downloads

Published

27/08/2024

How to Cite

OLIVEIRA, C. R. .; KAMINSKI, V. de L. .; VIEIRA, R. de P. .; FERREIRA, A.; OLÍMPIO, F. R. da S. .; LOURES, F. V. .; AIMBIRE, F. .; POLONINI, H. . Peptides with immunomodulatory properties (Imuno TF®) increase the frequency of the CD8+ T cell population in vitro . Research, Society and Development, [S. l.], v. 13, n. 8, p. e10813846597, 2024. DOI: 10.33448/rsd-v13i8.46597. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46597. Acesso em: 5 jan. 2025.

Issue

Section

Health Sciences