Advances in immunotherapy for cancer treatment: A literature review
DOI:
https://doi.org/10.33448/rsd-v13i9.46784Keywords:
Immunotherapy; Cancer; Checkpoint inhibitors; CAR-T cells; Therapeutic vaccines; Treatment resistance.Abstract
Immunotherapy has emerged as a revolutionary approach in cancer treatment, offering new hope for patients with previously intractable types of cancer. This article reviews recent advances in immunotherapy, highlighting key developments and their clinical implications. The review covers immune checkpoint inhibitors, chimeric antigen receptor T-cell (CAR-T) therapies, therapeutic cancer vaccines, and the combination of immunotherapies with other treatment modalities. Checkpoint inhibitors, such as anti-CTLA-4 and anti-PD-1/PD-L1 antibodies, have shown significant efficacy in various cancers, including melanoma and non-small cell lung cancer. CAR-T cell therapies have shown promising results in hematologic cancers, while therapeutic vaccines have the potential to induce robust and durable immune responses. The combination of immunotherapies with chemotherapy, radiotherapy, and targeted therapies is being explored to enhance efficacy and overcome treatment resistance. Despite the advances, significant challenges remain, including treatment resistance and side effects. Continuous research is essential to better understand the mechanisms of action of immunotherapy and develop new strategies to overcome current challenges. With the advancement of science and technology, immunotherapy has the potential to become an increasingly effective and widely used therapeutic approach in cancer treatment.
References
Antonia, S. J., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., & Faivre-Finn, C. (2017). Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. New England Journal of Medicine, 377(20), 1919-1929.
Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P., & Wigginton, J. M. (2012). Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. New England Journal of Medicine, 366(26), 2455-2465.
Brudno, J. N., & Kochenderfer, J. N. (2016). Toxicities of chimeric antigen receptor T cells: recognition and management. Blood, 127(26), 3321-3330.
Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity, 39(1), 1-10.
Gandhi, L., Rodríguez-Abreu, D., Gadgeel, S., Esteban, E., Felip, E., De Angelis, F., & Garassino, M. C. (2018). Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. New England Journal of Medicine, 378(22), 2078-2092.
Grupp, S. A., Kalos, M., Barrett, D., Aplenc, R., Porter, D. L., Rheingold, S. R., & June, C. H. (2013). Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. New England Journal of Medicine, 368(16), 1509-1518.
Hellmann, M. D., Ciuleanu, T. E., Pluzanski, A., Lee, J. S., Otterson, G. A., Audigier-Valette, C., & Reck, M. (2018). Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. New England Journal of Medicine, 378(22), 2093-2104.
June, C. H., O'Connor, R. S., Kawalekar, O. U., Ghassemi, S., & Milone, M. C. (2018). CAR T cell immunotherapy for human cancer. Science, 359(6382), 1361-1365.
Kalos, M., Levine, B. L., Porter, D. L., Katz, S., Grupp, S. A., Bagg, A., & June, C. H. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science translational medicine, 3(95), 95ra73-95ra73.
Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., & Wolchok, J. D. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New England Journal of Medicine, 373(1), 23-34.
Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., & Grupp, S. A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. New England Journal of Medicine, 371(16), 1507-1517.
Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., & Grupp, S. A. (2018). Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. New England Journal of Medicine, 378(5), 439-448.
Melief, C. J., van Hall, T., Arens, R., Ossendorp, F., & van der Burg, S. H. (2015). Therapeutic cancer vaccines. Journal of Clinical Investigation, 125(9), 3401-3412.
Munn, D. H., & Mellor, A. L. (2016). IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends in Immunology, 37(3), 193-207.
Palucka, K., & Banchereau, J. (2013). Cancer immunotherapy via dendritic cells. Nature Reviews Cancer, 12(4), 265-277.
Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 12(4), 252-264.
Pitt, J. M., Vetizou, M., Daillere, R., Roberti, M. P., Yamazaki, T., Routy, B., & Kroemer, G. (2016). Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and-extrinsic factors. Immunity, 44(6), 1255-1269.
Postow, M. A., Callahan, M. K., & Wolchok, J. D. (2015). Immune checkpoint blockade in cancer therapy. Journal of Clinical Oncology, 33(17), 1974-1982.
Reck, M., Rodríguez-Abreu, D., Robinson, A. G., Hui, R., Csőszi, T., Fülöp, A., & Brahmer, J. R. (2016). Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. New England Journal of Medicine, 375(19), 1823-1833.
Schadendorf, D., Ugurel, S., Schuler-Thurner, B., Nestle, F. O., Enk, A., Bröcker, E. B., & Kämpgen, E. (2011). Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Annals of Oncology, 17(4), 563-570.
Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 168(4), 707-723.
Slingluff, C. L. (2011). The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination?. Cancer Journal (Sudbury, Mass.), 17(5), 343.
Spranger, S., Bao, R., & Gajewski, T. F. (2015). Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature, 523(7559), 231-235.
Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., & Pardoll, D. M. (2012). Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443-2454.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Luis Miguel Carvalho Mendes; Lucas Arruda Lino; Victor Brasil Teixeira; Vinicius Brasil Teixeira; Vithoria Maria Bernieri Iffert; Mariana Carrilho Soares Bravo; Glamar Cunha da Silva; Tarciana Maria Bordignon ; Bruna Rocha Pereira ; Eduarda Emilly Silva Costa; Rosane Pereira Medeiros; Dyego Lopes Matos
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.