Far infrared emitting tissue: Evaluation of the effects on cellulite

Authors

DOI:

https://doi.org/10.33448/rsd-v13i9.46847

Keywords:

Photobiomodulation; Low-intensity light therapy; Cellulite; Aesthetics.

Abstract

Cellulite has a multifactorial etiology and causes significant changes in the subcutaneous layer, including edema, lipodystrophy, and fibrous deviation of the connective tissue. These changes are related to hormonal factors and the presence of inflammatory mediators. In this context, far infrared (FIR) has shown beneficial effects on cellular metabolism and function, increasing the bioavailability of nitric oxide (NO) and Ca2+, and improving blood circulation. This study aimed to evaluate the effects of using pants made of FIR-emitting fabric in women with cellulite. This research was submitted to and approved by the Research Ethics Committee. Sixteen sedentary women aged 30 to 55 years, with grade 1 to 4 cellulite were selected. The participants received two pants made of FIR-emitting fabric, INFUSION technology (BEAUTYTECH®, Guariba, SP, Brazil). The pants were worn for a period of 6 hours a day (8:00 a.m. to 6:00 p.m.), 5 times a week, for one month. Assessments before and after treatment were performed (photography, ultrasound, and thermography). Quantitative data were tabulated for statistical analysis. The images were analyzed qualitatively. The use of pants made of long-infrared (IVL) emitting fabric, under the experimental conditions presented, was shown to promote a slight reduction in edema and a significant decrease in surface temperature. These effects resulted in a qualitative improvement in the appearance of skin changes, including skin texture and the depth of depressions. Preliminary results indicate that this technology may be a promising therapeutic strategy in the treatment of cellulite.

References

Alves, A. C. A., Vieira, R. D. P., Leal-Junior, E. C. P., dos Santos, S. A., Ligeiro, A. P., Albertini, R., & de Carvalho, P. D. T. C. (2013). Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis research & therapy, 15, 1-11.

Anders, J. J., Lanzafame, R. J., & Arany, P. R. (2015). Low-level light/laser therapy versus photobiomodulation therapy. Photomedicine and laser surgery, 33(4), 183.

Atamoros, F. M. P., Alcalá Pérez, D., Asz Sigall, D., Avila Romay, A. A., Barba Gastelum, J. A., de la Peña Salcedo, J. A., ... & Welsh Hernández, E. C. (2018). Evidence‐based treatment for gynoid lipodystrophy: A review of the recent literature. Journal of Cosmetic Dermatology, 17(6), 977-983.

Barolet, D., Christiaens, F., & Hamblin, M. R. (2016). Infrared and skin: Friend or foe. Journal of Photochemistry and Photobiology B: Biology, 155, 78-85.

Bashkatov, A. N., Genina, E. A., Kochubey, V. I., & Tuchin, V. V. (2005). Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 38(15), 2543.

Bass, L. S., & Kaminer, M. S. (2020). Insights into the pathophysiology of cellulite: a review. Dermatologic Surgery, 46, S77-S85.

Bass, L. S., Hibler, B. P., Khalifian, S., Shridharani, S. M., Klibanov, O. M., & Moradi, A. (2023). Cellulite pathophysiology and psychosocial implications. Dermatologic Surgery, 49(4S), S2-S7.

Calderhead, R. G., & Vasily, D. B. (2016). Low level light therapy with light-emitting diodes for the aging face. Clinics in plastic surgery, 43(3), 541-550.

Conrado, L. A. L., & Munin, E. (2013). Reductions in body measurements promoted by a garment containing ceramic nanoparticles: a 4‐month follow‐up study. Journal of Cosmetic Dermatology, 12(1), 18-24.

de Brito Vieira, W. H., Bezerra, R. M., Queiroz, R. A. S., Maciel, N. F. B., Parizotto, N. A., & Ferraresi, C. (2014). Use of low-level laser therapy (808 nm) to muscle fatigue resistance: a randomized double-blind crossover trial. Photomedicine and Laser Surgery, 32(12), 678-685.

Etienne, R., Viegas, F. P. D., & Viegas Jr, C. (2021). Aspectos fisiopatológicos da inflamação e o planejamento de fármacos: uma visão geral atualizada. Revista Virtual de Química, 13(1).

Ferraresi, C., Huang, Y. Y., & Hamblin, M. R. (2016). Photobiomodulation in human muscle tissue: an advantage in sports performance?. Journal of biophotonics, 9(11-12), 1273-1299.

Gabriel, A., Chan, V., Caldarella, M., Wayne, T., & O’Rorke, E. (2023). Cellulite: current understanding and treatment. In Aesthetic Surgery Journal Open Forum (p. ojad050). Oxford University Press.

Gaspari, A. F. (2018). Tecido emissor de infravermelho longo: efeito sobre o desempenho aeróbio e mecanismos relacionados (Doctoral dissertation, [sn]). Faculdade de Educação Física- Universidade Estadual de Campinas, 2018.

Glass, G. E. (2021). Photobiomodulation: A review of the molecular evidence for low level light therapy. Journal of Plastic, Reconstructive & Aesthetic Surgery, 74(5), 1050-

Hamblin, M. R. (2016). Photobiomodulation or low-level laser therapy. Journal of biophotonics, 9(11-12), 1122.

Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS biophysics, 4(3), 337.

Hamblin, M. R. (2018). Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochemistry and photobiology, 94(2), 199-212.

Heiskanen, V., & Hamblin, M. R. (2018). Photobiomodulation: lasers vs. light emitting diodes?. Photochemical & Photobiological Sciences, 17(8), 1003-1017.

Hernandes, A. S. N., Dos Santos, G. F., & Vila, M. M. D. C. (2022). Celulite: uma breve revisão/Cellulite: a brief review. Brazilian Journal of Development, 8(1), 4201-4212.

Hernández-Bule, M. L., Naharro-Rodríguez, J., Bacci, S., & Fernández-Guarino, M. (2024). Unlocking the Power of Light on the Skin: A Comprehensive Review on Photobiomodulation. International Journal of Molecular Sciences, 25(8), 4483.

Hexsel, D. M., Dal’Forno, T., & Hexsel, C. L. (2009). A validated photonumeric cellulite severity scale. Journal of the European academy of dermatology and venereology, 23(5), 523-528..

Houreld, N. N. (2019). The use of lasers and light sources in skin rejuvenation. Clinics in dermatology, 37(4), 358-364.

Kaminer, M. S., Casabona, G., Peeters, W., Bartsch, R., Butterwick, K., Chao, Y. Y. Y., & Kerscher, M. (2019). Validated assessment scales for skin laxity on the posterior thighs, buttocks, anterior thighs, and knees in female patients. Dermatologic Surgery, 45, S12-S21.

Leung, T. K., Lee, C. M., Tsai, S. Y., Chen, Y. C., & Chao, J. S. (2011). A pilot study of ceramic powder far-infrared ray irradiation (cFIR) on physiology: observation of cell cultures and amphibian skeletal muscle. Chin J Physiol, 54(4), 247-54.

Leung, T. K. (2015). In vitro and in vivo studies of the biological effects of bioceramic (a material of emitting high performance far-infrared ray) irradiation. Chin J Physiol, 58(3), 147-155.

Longhitano, S., Galadari, H., Cascini, S., Shaniko, K., Chester, J., Farnetani, F., ... & Guida, S. (2020). A validated photonumeric cellulite severity scale for the area above the knees: the knee cellulite severity score. Journal of the European Academy of Dermatology and Venereology, 34(9), 2152-2155.

Lopes-Martins, R. A. B., Barbaroto, D. P., Da Silva Barbosa, E., Leonardo, P. S., Ruiz-Silva, C., & Arisawa, E. A. L. S. (2022). Infrared thermography as valuable tool for gynoid lipodystrophy (cellulite) diagnosis. Lasers in Medical Science, 37(6), 2639-2644.

Manoel, C. D. A., Paolillo, F. R., & MENEZES, P. F. C. D. (2014). Conceitos fundamentais e práticos da fotoestética. Compacta.

Mazurkiewicz, J., Bauer, J., Mosion, M., Migasiewicz, A., & Podbielska, H. (2018). Severity of cellulite classification based on tissue thermal imagining. In Artificial Intelligence and Soft Computing: 17th International Conference, ICAISC 2018, Zakopane, Poland, June 3-7, 2018, Proceedings, Part II 17 (pp. 179-190). Springer International Publishing.

Nair, A., Thankachen, R. U., Raj, J., & Gopi, S. (2021). Inflammation, symptoms, benefits, reaction, and biochemistry. In Inflammation and Natural Products (pp. 1-19). Academic Press.

Nampo, F. K., Cavalheri, V., dos Santos Soares, F., de Paula Ramos, S., & Camargo, E. A. (2016). Low-level phototherapy to improve exercise capacity and muscle performance: a systematic review and meta-analysis. Lasers in medical science, 31(9), 1957-1970.

Pastore, D., Pacifici, F., Ciao, G., Bedin, V., Pasquantonio, G., & Della-Morte, D. (2020). Far infrared technology (FIT) therapy patches, protects from inflammation, oxidative stress and promotes cellular vitality. Current pharmaceutical design, 26(34), 4323-4329.

Paula, R. F. D.,; David, R. B., & Schneider, A. P. (2011). Lipodistrofia ginoide: conceito, etiopatogenia e manejo nutricional. Rev Bras Nutr Clin, 26(3), 202-6.

Sadick, N. (2019). Treatment for cellulite. International journal of women's dermatology, 5(1), 68-72.

Sene‐Fiorese, M., Duarte, F. O., de Aquino Junior, A. E., Campos, R. M. D. S., Masquio, D. C. L., Tock, L., & Bagnato, V. S. (2015). The potential of phototherapy to reduce body fat, insulin resistance and “metabolic inflexibility” related to obesity in women undergoing weight loss treatment. Lasers in surgery and medicine, 47(8), 634-642.

Soares, C. L. R., Wilairatana, P., Silva, L. R., Moreira, P. S., Barbosa, N. M. M. V., da Silva, P. R., & Felipe, C. F. B. (2023). Biochemical aspects of the inflammatory process: A narrative review. Biomedicine & Pharmacotherapy, 168, 115764.

Tomczyk, J., & Malara, B. (2023). Modern methods of cellulite diagnosis and treatment. Aesth Cosmetol Med,12(4),143-149.

Tsai, S. R., & Hamblin, M. R. (2017). Biological effects and medical applications of infrared radiation. Journal of Photochemistry and Photobiology B: Biology, 170, 197-207.

Vatansever, F., & Hamblin, M. R. (2012). Far infrared radiation (FIR): Its biological effects and medical applications: Ferne Infrarotstrahlung: Biologische Effekte und medizinische Anwendungen. Photonics & lasers in medicine, 1(4), 255-266.

Vicente-Ruiz, M. (2023). Cellulite: Etiology and Treatment. In Post-maternity Body Changes: Obstetric Fundamentals and Surgical Reshaping (pp. 733-749). Cham: Springer International Publishing.

Wilczyński, S., Koprowski, R., Deda, A., Janiczek, M., Kuleczka, N., & Błońska‐Fajfrowska, B. (2017). Thermographic mapping of the skin surface in biometric evaluation of cellulite treatment effectiveness. Skin Research and Technology, 23(1), 61-69.

Yu, S. Y., Chiu, J. H., Yang, S. D., Hsu, Y. C., Lui, W. Y., & Wu, C. W. (2006). Biological effect of far‐infrared therapy on increasing skin microcirculation in rats. Photodermatology, photoimmunology & photomedicine, 22(2), 78-86.

Youn, S. W., Kim, Y. S., Lee, M. C., & Chung, D. S. (2001). An Investigation of the Effectiveness of Far Infrared Ray Functional Sportswear as an Ergogenic Aid to Aerobic Capacity and Recovery from Fatigue. International Journal of Applied Sports Sciences, 13(1).

Young, V. L., & DiBernardo, B. E. (2021). Comparison of cellulite severity scales and imaging methods. Aesthetic surgery journal, 41(6), NP521-NP537.

Published

17/09/2024

How to Cite

INÁCIO, R. F. .; PINTO, M. C. da C. .; SENE-FIORESE, M. Far infrared emitting tissue: Evaluation of the effects on cellulite . Research, Society and Development, [S. l.], v. 13, n. 9, p. e5113946847, 2024. DOI: 10.33448/rsd-v13i9.46847. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/46847. Acesso em: 2 jan. 2025.

Issue

Section

Health Sciences