3D food printing: A review of history, functionality and challenges in product development
DOI:
https://doi.org/10.33448/rsd-v14i1.47902Keywords:
Printed foods; Personalization; Macronutrients.Abstract
3D food printing is an innovative technology with the potential to transform food manufacturing, enabling personalization and the creation of sustainable products. This study aims to review the application of 3D printing in food production, addressing scientific and technological advancements. Using techniques such as extrusion, inkjet printing, and selective laser sintering, it is possible to produce foods from proteins, carbohydrates, and lipids. These nutrients play a crucial role in the formulation of printed foods, influencing properties like texture, viscosity, and stability, directly impacting the final quality of the products. Despite numerous advantages, such as customization and waste reduction, significant challenges remain. Among the main obstacles are technical complexity, high equipment costs, and limited public acceptance due to a lack of awareness about the benefits of 3D printing. Additionally, issues related to food safety, process standardization, and scalability must be addressed for the technology to achieve widespread adoption. The extrusion technique has been widely used due to its flexibility in handling viscoelastic formulations. However, further exploration of other techniques for food production, such as stereolithography and selective laser sintering, is necessary to expand application possibilities, particularly in creating foods with complex geometries or specific nutritional properties. It concludes that, despite current limitations, 3D printing has the potential to revolutionize food production by enabling the creation of products that meet the nutritional and sensory demands of modern consumers.
References
Abdulhameed, O., Al-Ahmari, A., Ameen, W., & Mian, S. H. (2019). Additive manufacturing: Challenges, trends, and applications. Advances in Mechanical Engineering, 11(2), 168781401882288. https://doi.org/10.1177/1687814018822880
Almeida, V. V., Canesin, E. A., Suzuki, R. M., & Palioto, G. F. (2013). Análise qualitativa de proteínas em alimentos por meio de reação de complexação do íon cúprico. Química Nova na Escola, 35(1), 34-40.
Asokapandian, S., Sreelakshmi, S., & Rajamanickam, G. (2021). Lipids and Oils: An Overview. In: Gani, A., Ashwar, B.A. (eds) Food biopolymers: Structural, functional and nutraceutical properties. Springer, Cham. https://doi.org/10.1007/978-3-030-27061-2_16
Badotti, A. V. B. (2003). Avaliação do processo de metalização superficial aplicado a peças obtidas por estereolitografia. Dissertação de mestrado (Engenharia Mecânica), Universidade Federal de Santa Catarina. 149 p.
Baiano, A. (2020). 3D Printed Foods: A Comprehensive Review on Technologies, Nutritional Value, Safety, Consumer Attitude, Regulatory Framework, and Economic and Sustainability Issues. Food Reviews International, 38(5), 1–31. https://doi.org/10.1080/87559129.2020.1762091
Balasubramaniam, S. P. L., Tajvidi, M., & Skonberg, D. (2024). Hydrophobic corn zein-modified cellulose nanofibril (CNF) films with antioxidant properties. Food Chemistry, 458, 140220. https://doi.org/10.1016/j.foodchem.2024.140220
Bhuiyan, Md. H. R., Yeasmen, N., & Ngadi, M. (2024). Effect of food hydrocolloids on 3D meat-analog printing and deep-fat-frying. Food Hydrocolloids, 159, 110716. https://doi.org/10.1016/j.foodhyd.2024.110716
Bisht, B., Begum, J.P.S., Dmitriev, A. A., Kurbatova, A., Singh, N., Katsuyoshi Nishinari, Nanda, M., Kumar, S., Vlaskin, M. S., & Kumar, V. (2024). Unlocking the potential of future version 3D food products with next generation microalgae blue protein integration: A review. Trends in Food Science & Technology, 147, 104471–104471. https://doi.org/10.1016/j.tifs.2024.104471
Alencastro, R. B., & Bracht, F. (2011). Sobre a Nomenclatura de Carboidratos. Revista Virtual de Química, 3(4). https://doi.org/10.5935/1984-6835.20110039
Bravi, L., & Murmura, F. (2021). Additive Manufacturing in the Food Sector: A Literature Review. Macromolecular Symposia, 395(1), 2000199. https://doi.org/10.1002/masy.202000199
Brischetto, S., Maggiore, P., & Ferro, C. (2017). Special Issue on “Additive Manufacturing Technologies and Applications.” Technologies, 5(3), 58. https://doi.org/10.3390/technologies5030058
Brunner, T. A., Delley, M., & Denkel, C. (2018). Consumers’ attitudes and change of attitude toward 3D-printed food. Food Quality and Preference, 68, 389–396. https://doi.org/10.1016/j.foodqual.2017.12.010
Bugarin-Castillo, Y., Rando, P., Clabaux, M., Moulin, G., & Ramaioli, M. (2023). 3D printing to modulate the texture of starch-based food. Journal of Food Engineering, 350, 111499. https://doi.org/10.1016/j.jfoodeng.2023.111499
Casanova, F., Lima, G., Naaman F.N. Silva, Fernandes, A., & Frédéric Gaucheron. (2021). Interactions between caseins and food-derived bioactive molecules: A review. Food Chemistry, 359, 129820–129820. https://doi.org/10.1016/j.foodchem.2021.129820
Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., & Mota, M. S. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health. Journal of Nursing and Health, 10(n. esp.), e20104031. https://doi.org/10.1080/1364557032000119616
Caulier, S., Doets, E., & Noort, M. (2020). An exploratory consumer study of 3D printed food perception in a real-life military setting. Food Quality and Preference, 86, 104001. https://doi.org/10.1016/j.foodqual.2020.104001
Chao, C., Hyong Kyong Nam, Hyun Jin Park, & Hyun Woo Kim. (2024). Potentials of 3D printing in nutritional and textural customization of personalized food for elderly with dysphagia. Applied Biological Chemistry, 67(1). https://doi.org/10.1186/s13765-023-00854-7
Chaves, K. F., Barrera-Arellano, D., & Ribeiro, A. P. B. (2018). Potential application of lipid organogels for food industry. Food Research International, 105, 863–872. https://doi.org/10.1016/j.foodres.2017.12.020
Chen, H., Xie, F., Chen, L., & Zheng, B. (2019). Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. Journal of Food Engineering, 244, 150–158. https://doi.org/10.1016/j.jfoodeng.2018.09.011
Chen, J., Gao, Q., Zhang, X., Bassey, A. P., Zeng, X., Zhou, G., & Xu, X. (2022). A structural explanation for protein digestibility changes in different food matrices. Food Hydrocolloids, 136, 108281–108281. https://doi.org/10.1016/j.foodhyd.2022.108281
Chua, C. K., Leong, K. F., & An, J. (2014). Introduction to rapid prototyping of biomaterials. In: NARAYAN, R. (Ed.). Rapid Prototyping of Biomaterials. Woodhead Publishing, 1–15. https://doi.org/10.1533/9780857097217.1
Cohen, D. L., Lipton, J. I., Cutler, M., Coulter, D., Vesco, A., & Lipson, H. (2009). Hydrocolloid Printing: A Novel Platform for Customized Food Production. https://doi.org/10.26153/tsw/15154
Corrochano, A. R., Yunus Sariçay, Arranz, E., Kelly, P. M., Vitaly Buckin, & Giblin, L. (2019). Comparison of antioxidant activities of bovine whey proteins before and after simulated gastrointestinal digestion. Journal of Dairy Science, 102(1), 54–67. https://doi.org/10.3168/jds.2018-14581
Çalışkan, C. İ. (2019). Reviving Ottoman bird palaces and retro approach with additive manufacting method. Digital Applications in Archaeology and Cultural Heritage, 14, e00115. https://doi.org/10.1016/j.daach.2019.e00115
Dankar, I., Haddarah, A., El Omar, F., Sepulcre, F., & Pujolà, M. (2018). Assessing the microstructural and rheological changes induced by food additives on potato puree. Food Chemistry, 240, 304–313. https://doi.org/10.1016/j.foodchem.2017.07.121
Duarte, L. C., Figueredo, F., Cyro L.S. Chagas, Cortón, E., & Wendell K.T. Coltro. (2024). A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications. Analytica Chimica Acta, 342429–342429. https://doi.org/10.1016/j.aca.2024.342429
Enyan, M., Nii, J., Eliasu Issaka, & Abban, O. J. (2024). Advances in fused deposition modeling on process, process parameters, and multifaceted industrial application: a review. Engineering Research Express, 6(1), 012401–012401. https://doi.org/10.1088/2631-8695/ad32f6
Er, Y., Onur Güler, Abid Ustaoğlu, Gökhan Hekimoğlu, Ahmet Sarı, Serkan Subaşı, Osman Gencel, & Muhammed Maraşlı. (2024). Characterisation and Energy Storage Performance of 3D Printed-Photocurable Resin/Microencapsulated Phase Change Material Composite. Thermal Science and Engineering Progress, 102381–102381. https://doi.org/10.1016/j.tsep.2023.102381
Erünsal, S. C., Basturk, Z. S., Canturkoglu, I., & Öztürk, H. I. (2023). Development of 3D printed dark chocolate sweetened with carob extract. International Journal of Gastronomy and Food Science, 34, 100794–100794. https://doi.org/10.1016/j.ijgfs.2023.100794
Ferreira, V. F., Silva, F. de C. da, & Ferreira, P. G. (2013). Carboidratos como fonte de compostos para a indústria de química fina. Química Nova, 36(10), 1514–1519. https://doi.org/10.1590/s0100-40422013001000006
Fennema, O. R., Damodaran, S., & Parkin, K. L. (2010). Química de alimentos de Fennema. Porto Alegre: Artmed.
Foggiatto, J. A., Ahrens, C. H., Salmoria, G. V., & Pires, A. T. N. (2004). Moldes de ABS construídos pelo processo de modelagem por fusão e deposição para injeção de PP e PEBD. Polímeros, 14, 349–353. https://doi.org/10.1590/S0104-14282004000500013
Gholamipour-Shirazi, A., Norton, I. T., & Mills, T. (2019). Designing hydrocolloid based food-ink formulations for extrusion 3D printing. Food Hydrocolloids, 95, 161–167. https://doi.org/10.1016/j.foodhyd.2019.04.011
Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44–54. https://doi.org/10.1016/j.jfoodeng.2016.01.025
Godoi, F. C., Bhandari, B. R., Prakash, S., & Zhang, M. (2019). An Introduction to the Principles of 3D Food Printing. Fundamentals of 3D Food Printing and Applications, 1–18. https://doi.org/10.1016/b978-0-12-814564-7.00001-8
Gunduz, I. E., McClain, M. S., Cattani, P., Chiu, G. T.-C. ., Rhoads, J. F., & Son, S. F. (2018). 3D printing of extremely viscous materials using ultrasonic vibrations. Additive Manufacturing, 22, 98–103. https://doi.org/10.1016/j.addma.2018.04.029
Guo, J., Gu, X., & Meng, Z. (2024). Customized 3D printing to build plant-based meats: Spirulina platensis protein-based Pickering emulsion gels as fat analogs. Innovative Food Science & Emerging Technologies, 94, 103679–103679. https://doi.org/10.1016/j.ifset.2024.103679
Haghighatjoo, F., Nikkhah, M., & Rahimpour, M. R. (2024). Carbohydrate Characterization and Exploitation. In: Rahimpour, M. R. (ed.). Encyclopedia of Renewable Energy, Sustainability and the Environment. 1st ed. Elsevier, p. 553-564. https://doi.org/10.1016/B978-0-323-93940-9.00190-0
Han, D., & Lee, H. (2020). Recent advances in multi-material additive manufacturing: methods and applications. Current Opinion in Chemical Engineering, 28, 158–166. https://doi.org/10.1016/j.coche.2020.03.004
Holland, S., Foster, T., Macnaughtan, W., & Tuck, C. (2018). Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering, 220, 12–19. https://doi.org/10.1016/j.jfoodeng.2017.06.008
Huang, J., Qin, Q., & Wang, J. (2020). A Review of Stereolithography: Processes and Systems. Processes, 8(9), 1138. https://doi.org/10.3390/pr8091138
Jasanoff, S. (2015). Future imperfect: Science, technology, and the imaginations of modernity. In: Dreamscapes of modernity: Sociotechnical imaginaries and the fabrication of power. p. 1-33. https://doi.org/10.7208/9780226276663-001.
Jesus, N. R. C., & Peres, F. F. F. (2021). Impressora 3D no ambiente educacional: Um Mapeamento Sistemático da Literatura. In: CONGRESSO LATINO-AMERICANO DE SOFTWARE LIVRE E TECNOLOGIAS ABERTAS (LATINOWARE), 18. 94-102, Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação. https://doi.org/10.5753/latinoware.2021.19911
Jiménez, M., Romero, L., Domínguez, I. A., Espinosa, M. del M., & Domínguez, M. (2019). Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects. Complexity, 2019, 1–30. https://doi.org/10.1155/2019/9656938
Jonkers, N., van Dijk, W. J., Vonk, N. H., van Dommelen, J. A. W., & Geers, M. G. D. (2022). Anisotropic mechanical properties of Selective Laser Sintered starch-based food. Journal of Food Engineering, 318, 110890. https://doi.org/10.1016/j.jfoodeng.2021.110890
Kruif, C. G., Huppertz, T., Urban, V. S., & Petukhov, A. V. (2012). Casein micelles and their internal structure. Advances in Colloid and Interface Science, 171-172, 36–52. https://doi.org/10.1016/j.cis.2012.01.002
Kavimughil, M. Maria Leena, Moses, J. A., & Anandharamakrishnan, C. (2022). 3D printed MCT oleogel as a co-delivery carrier for curcumin and resveratrol. 287, 121616–121616. https://doi.org/10.1016/j.biomaterials.2022.121616
Kessler, A., Hickel, R., & Reymus, M. (2019). 3D Printing in Dentistry—State of the Art. Operative Dentistry, 45(1). https://doi.org/10.2341/18-229-l
Koranne, V., Jonas, O. L. C., Mitra, H., Bapat, S., Ardekani, A. M., Sealy, M. P., Rajurkar, K., & Malshe, A. P. (2022). Exploring Properties of Edible Hydrolyzed Collagen for 3D Food Printing of Scaffold for Biomanufacturing Cultivated Meat. 110, 186–191. https://doi.org/10.1016/j.procir.2022.06.034
Kruth, J. P., Levy, G., Klocke, F., & Childs, T. H. C. (2007). Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals, 56(2), 730–759. https://doi.org/10.1016/j.cirp.2007.10.004
Kulkarni, A., & Pearce, J. M. (2023). Patent Parasites: Non-Inventors Patenting Existing Open-Source Inventions in the 3-D Printing Technology Space. Inventions, 8(6), 141. https://doi.org/10.3390/inventions8060141
Kumar, R., Kumar, M., & Chohan, J. S. (2021). Material-specific properties and applications of additive manufacturing techniques: a comprehensive review. Bulletin of Materials Science, 44(3). https://doi.org/10.1007/s12034-021-02364-y
Lanaro, M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., & Woodruff, M. A. (2017). 3D printing complex chocolate objects: Platform design, optimization and evaluation. Journal of Food Engineering, 215, 13–22. https://doi.org/10.1016/j.jfoodeng.2017.06.029
Li, L., Shi, X., Qi, S., Zhang, X., Fung, H.-Y., Li, Q., & Han, Q. (2024). Strategies, techniques and applications for food authentication based on carbohydrates: A review. Carbohydrate Polymers, 344, 122533. https://doi.org/10.1016/j.carbpol.2024.122533
Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews, 117(15), 10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074
Lim, W. S., Kim, H. W., Lee, M. H., & Park, H. J. (2023). Improved printability of pea protein hydrolysates for protein-enriched 3D printed foods. Journal of Food Engineering, 350, 111502. https://doi.org/10.1016/j.jfoodeng.2023.111502
Lipton, J., Arnold, D., Nigl, F., Lopez, N., Cohen, D., Norén, N., & Lipson, H. (2010, September 23). Multi-Material Food Printing with Complex Internal Structure Suitable for Conventional Post-Processing. Repositories.lib.utexas.edu; University of Texas at Austin. https://doi.org/10.26153/tsw/15245
Liu, J., Dong, S., Jin, X., Wu, P., Yan, S., Liu, X., Tan, Y., Li, C., & Xu, B. (2022). Quality control of large-sized alloy steel parts fabricated by multi-laser selective laser melting (ML-SLM). Materials & Design, 223, 111209. https://doi.org/10.1016/j.matdes.2022.111209
Liu, L., & Ciftci, O. N. (2021). Effects of high oil compositions and printing parameters on food paste properties and printability in a 3D printing food processing model. Journal of Food Engineering, 288, 110135. https://doi.org/10.1016/j.jfoodeng.2020.110135
Liu, Z., & Zhang, M. (2019). 3D Food Printing Technologies and Factors Affecting Printing Precision. Godoi, F. C., Bhandari, B. R., Prakash, S., Zhang, M. (ed.) Fundamentals of 3D Food Printing and Applications, 19–40. https://doi.org/10.1016/b978-0-12-814564-7.00002-x
Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology, 69, 83–94. https://doi.org/10.1016/j.tifs.2017.08.018
Long, J., Gholizadeh, H., Lu, J., Bunt, C., & Seyfoddin, A. (2016). Review: Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery. Current Pharmaceutical Design, 22(999), 1–1. https://doi.org/10.2174/1381612822666161026162707
Lu, Y., Rai, R., & Nitin Nitin. (2023). Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing. Food Research International, 173, 113384–113384. https://doi.org/10.1016/j.foodres.2023.113384
Lupton, D. (2017). “Download to delicious”: Promissory themes and sociotechnical imaginaries in coverage of 3D printed food in online news sources. Futures, 93, 44–53. https://doi.org/10.1016/j.futures.2017.08.001
Malaghini, C. M. E., Ferreira, B. C. F., Pierezan, M. D., Manassi, C. F., & Verruck, S. (2021). Farinha de insetos como fonte alternativa de proteínas em produtos de cereais impressos em 3D. Avanços Em Ciência E Tecnologia de Alimentos - Volume 5, 188–202. https://doi.org/10.37885/211106838
Malone, E., & Lipson, H. (2007). Fab@Home: the personal desktop fabricator kit. Rapid Prototyping Journal, 13(4), 245–255. https://doi.org/10.1108/13552540710776197
Mantihal, S., Prakash, S., Godoi, F. C., & Bhandari, B. (2017). Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innovative Food Science & Emerging Technologies, 44, 21–29. https://doi.org/10.1016/j.ifset.2017.09.012
Martini, D., Del Bo’, C., & Cavaliere, A. (2019). Current legislation in the European context: a focus on food labeling, novel foods, nutrition, and health claims. In: Bagghi, D. (ed.). Nutraceutical and Functional Food Regulations in the United States and around the World (Third Edition). Academic Press. 253–265. https://doi.org/10.1016/B978-0-12-816467-9.00018-6
Mattos, P. C. (2015). Tipos de revisão de literatura. Botucatu. Disponível em: http://www.ip.usp.br/portal/images/biblioteca/revisao.pdf.
Mazzoli, A. (2012). Selective laser sintering in biomedical engineering. Medical & Biological Engineering & Computing, 51(3), 245–256. https://doi.org/10.1007/s11517-012-1001-x
Montoya, J., Medina, J., Molina, A., Gutiérrez, J., Rodríguez, B., & Marín, R. (2021). Impact of viscoelastic and structural properties from starch-mango and starch-arabinoxylans hydrocolloids in 3D food printing. Additive Manufacturing, 39, 101891. https://doi.org/10.1016/j.addma.2021.101891
Miranda Morandini, M., & Del Vechio, G. H. (2020). Impressão 3D, tipos e possibilidades. Revista Interface Tecnológica, 17(2), 67–77. https://doi.org/10.31510/infa.v17i2.866
Moreira, A. S. (2022). Classificação de proteínas expostas na superfície com Random Forest. Trabalho de conclusão de curso (Ciência da Computação). Universidade Federal de Uberlandia, 53 p.
Msallem, B., Sharma, N., Cao, S., Halbeisen, F. S., Zeilhofer, H.-F., & Thieringer, F. M. (2020). Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology. Journal of Clinical Medicine, 9(3), 817. https://doi.org/10.3390/jcm9030817
Nadagouda, M. N., Ginn, M., & Rastogi, V. (2020). A review of 3D printing techniques for environmental applications. Current Opinion in Chemical Engineering, 28, 173–178. https://doi.org/10.1016/j.coche.2020.08.002
Neamah, H. A., & Tandio, J. (2024). Towards the development of foods 3D printer: Trends and technologies for foods printing. Heliyon, e33882–e33882. https://doi.org/10.1016/j.heliyon.2024.e33882
Nei, D., & Sasaki, T. (2023). Applicability of defatted soybean flours to 3D food printer: Effect of milling methods on printability and quality of 3D-printed foods. Journal of Food Engineering, 337, 111237. https://doi.org/10.1016/j.jfoodeng.2022.111237
Nelson, D. L., & Cox, M. M. (2022) Princípios de bioquímica de Lehninger. Artmed Editora, p. 100-218.
Noort, M. W. J. (2016). Method for the production of an edible object using SLS. WO Patent, 2016085344(2).
Oliveira, J. E. D., & Marchini, J. E. (1998). Ciências Nutricionais. São Paulo: Sarvier, 403 p.
Padhiary, M., Barbhuiya, J. A., Roy, D., & Roy, P. (2024). 3D printing applications in smart farming and food processing. Smart Agricultural Technology, 9, 100553. https://doi.org/10.1016/j.atech.2024.100553
Pateiro, M., Domínguez, R., Munekata, P. E. S., Barba, F. J., & Lorenzo, J. M. (2019). Lipids and fatty acids. In: Barba, F. J., Saraiva, J. M. A., Cravotto, G., Lorenzo, J. M. (Eds.). Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds. Woodhead Publishing Series in Food Science, Technology and Nutrition, Woodhead Publishing, 107-137. https://doi.org/10.1016/B978-0-12-814174-8.00004-4
Periard, D., Schaal, N., & Schaal, M. (2007). Printing food. In: Proceedings of the 18th solid freeform fabrication symposium, Austin, TX, EUA, 564-574.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: Universidade Federal de Santa Maria. https://www.ufsm.br/publicacoes/metodologia.
Portanguen, S., Tournayre, P., Sicard, J., Astruc, T., & Mirade, P.-S. (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science & Technology, 86, 188–198. https://doi.org/10.1016/j.tifs.2019.02.023
Reche, C., Mónica Umaña, Dalmau, E., Carcel, J. A., & Eim, V. (2024). Improving 3D printed food characteristics by using mushroom by-products and olive oil in the formulation. LWT, 202, 116238–116238. https://doi.org/10.1016/j.lwt.2024.116238
Ross, M. M., Burke, R. M., & Kelly, A. L. (2021). 3D Printing of Food. Burke, R. M., Kelly, A. L., Lavelle, C., & Kientza, H. T. vo (Eds.). Handbook of Molecular Gastronomy. CRC Press, 605-618. https://doi.org/10.1201/9780429168703
Ross, M. M., Crowley, S. V., & Kelly, A. L. (2022). Applications of micellar casein concentrate in 3D-printed food structures. Innovative Food Science & Emerging Technologies, 82, 103182. https://doi.org/10.1016/j.ifset.2022.103182
Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, 20(2), v-vi. Disponível em: https://doi.org/10.1590/S0103-21002007000200001.
Rubén Domínguez, Pateiro, M., Purriños, L., Paulo E.S. Munekata, Echegaray, N., & Lorenzo, J. M. (2022). Introduction and classification of lipids. Elsevier EBooks, 1–16. https://doi.org/10.1016/b978-0-12-823371-9.00018-6
Sachlos, E. (2003). Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials, 24(8), 1487–1497. https://doi.org/10.1016/s0142-9612(02)00528-8
Santos, C. S. (2014). Desenvolvimento de uma nova metodologia sintética para a hidrólise quimiosseletiva de O-glicosídeos 2,3-insaturados. Trabalho de conclusão de curso (Licenciatura em Química), Universidade Federal de Campina Grande, 70 p.
Scheele, S. C., Binks, M., Christopher, G., Maleky, F., & Egan, P. F. (2023). Printability, texture, and sensory trade-offs for 3D printed potato with added proteins and lipids. Journal of Food Engineering, 351, 111517. https://doi.org/10.1016/j.jfoodeng.2023.111517
Shahbazi, M., Jäger, H., & Ettelaie, R. (2021). Application of Pickering emulsion and 3D printing for personalized nutrition. Part II: Functional properties of reduced-fat 3D printed cheese analogues. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 126760. https://doi.org/10.1016/j.colsurfa.2021.126760
Sharma, R., Chandra Nath, P., Kumar Hazarika, T., Ojha, A., Kumar Nayak, P., & Sridhar, K. (2024). Recent advances in 3D printing properties of natural food gels: Application of innovative food additives. Food Chemistry, 432, 137196. https://doi.org/10.1016/j.foodchem.2023.137196
Shen, D., Zhang, M., Mujumdar, A. S., & Li, J. (2022). Advances and application of efficient physical fields in extrusion based 3D food printing technology. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2022.11.017
Shigi, R., & Seo, Y. (2024). Acceptance of 3D printed foods among senior consumers in Japan. Food Quality and Preference, 118, 105213–105213. https://doi.org/10.1016/j.foodqual.2024.105213
Shirazi, S. F. S., Gharehkhani, S., Mehrali, M., Yarmand, H., Metselaar, H. S. C., Kadri, N. A., Engineering, N. A. A. O. (2015). A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. ProQuest. https://doi.org/10.1088/1468-6996/16/3/033502
Shuai, X., Li, Y., Zhang, Y., Wei, C., Zhang, M., & Du, L. (2024). Gelation of whole macadamia butter by different oleogelators affects the physicochemical properties and applications. LWT, 198, 115961. https://doi.org/10.1016/j.lwt.2024.115961
Silva, L. R. & Vilela, D. M. (2019). Tecnologia de chá e seus processos: uma revisão. Revista UNINGÁ Review, 34(2), 39-50.
Singh, M., Trivedi, N., Enamala, M. K., Kuppam, C., Parikh, P., Nikolova, M. P., & Chavali, M. (2021). Plant-based meat analogue (PBMA) as a sustainable food: a concise review. European Food Research and Technology, 247. https://doi.org/10.1007/s00217-021-03810-1
Smetana, S., Ashtari Larki, N., Pernutz, C., Franke, K., Bindrich, U., Toepfl, S., & Heinz, V. (2018). Structure design of insect-based meat analogs with high-moisture extrusion. Journal of Food Engineering, 229, 83–85. https://doi.org/10.1016/j.jfoodeng.2017.06.035
Soares, J. M., Santos, M. M. R., Candido, C. J., Santos, E. F. dos, & Novello, D. (2017). Cookies adicionados de farinha de jatobá: composição química e análise sensorial entre crianças. Revista Brasileira de Pesquisa Em Saúde/Brazilian Journal of Health Research, 18(3), 74–82. https://doi.org/10.21722/rbps.v18i3.15746
Song, Y., Ghafari, Y., Asefnejad, A., & Toghraie, D. (2024). An overview of selective laser sintering 3D printing technology for biomedical and sports device applications: Processes, materials, and applications. Optics & Laser Technology, 171, 110459. https://doi.org/10.1016/j.optlastec.2023.110459
Su, A., & Al’Aref, S. J. (2018). History of 3D Printing. In: Al'aref, S. J., Mosadegh, B., Dunham, S., & Min, J. K. (Ed.). 3D Printing Applications in Cardiovascular Medicine, 1–10. https://doi.org/10.1016/b978-0-12-803917-5.00001-8
Sun, J., Zhou, W., Yan, L., Huang, D., & Lin, L. (2018). Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering, 220, 1–11. https://doi.org/10.1016/j.jfoodeng.2017.02.028
Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H., & Hong, G. S. (2015). An Overview of 3D Printing Technologies for Food Fabrication. Food and Bioprocess Technology, 8(8), 1605–1615. https://doi.org/10.1007/s11947-015-1528-6
Tang, T., Zhang, M., Bhandari, B., & Li, C. (2024). Personalized transformation of 3D printing for traditional multi-material food with stuffing:A review. Food Bioscience, 59, 104112–104112. https://doi.org/10.1016/j.fbio.2024.104112
Tintor, Đ., Ninković, K., Milošević, J., & Polović, N. Đ. (2024). Gaining insight into protein structure via ATR-FTIR spectroscopy. Vibrational Spectroscopy, 134, 103726. https://doi.org/10.1016/j.vibspec.2024.103726
Tong, Q., Jiang, Y., Xiao, S., Meng, Y., & Dong, X. (2024). Research on improving the structural stability of surimi 3D printing through laser cooking techniques. Journal of Food Engineering, 375, 112075. https://doi.org/10.1016/j.jfoodeng.2024.112075
Tsai, C.-R., & Lin, Y.-K. (2022). Artificial steak: A 3D printable hydrogel composed of egg albumen, pea protein, gellan gum, sodium alginate and rice mill by-products. Future Foods, 5, 100121. https://doi.org/10.1016/j.fufo.2022.100121
Ulloa, M., Nunes-Nesi, A., da Fonseca-Pereira, P., Poblete-Grant, P., Reyes-Díaz, M., & Cartes, P. (2021). The effect of silicon supply on photosynthesis and carbohydrate metabolism in two wheat (Triticum aestivum L.) cultivars contrasting in response to phosphorus nutrition. Plant Physiology and Biochemistry, 169, 236–248. https://doi.org/10.1016/j.plaphy.2021.11.022
Valino, A. D., Dizon, J. R. C., Espera, A. H., Chen, Q., Messman, J., & Advincula, R. C. (2019). Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science, 98, 101162. https://doi.org/10.1016/j.progpolymsci.2019.101162
Venkatachalam, A., Balasubramaniam, A., Wilms, P. F. C., Zhang, L., & Schutyser, M. A. I. (2023). Impact of varying macronutrient composition on the printability of pea-based inks in extrusion-based 3D food printing. Food Hydrocolloids, 142, 108760. https://doi.org/10.1016/j.foodhyd.2023.108760
Voon, S. L., An, J., Wong, G., Zhang, Y., & Chua, C. K. (2019). 3D food printing: a categorised review of inks and their development. Virtual and Physical Prototyping, 14(3), 203–218. https://doi.org/10.1080/17452759.2019.1603508
Vukušić Pavičić, T., Grgić, T., Ivanov, M., Novotni, D., & Herceg, Z. (2021). Influence of Flour and Fat Type on Dough Rheology and Technological Characteristics of 3D-Printed Cookies. Foods (Basel, Switzerland), 10(1), 193. https://doi.org/10.3390/foods10010193
Wang, X., Zhang, M., Mujumdar, A. S., & Li, J. (2023). Easy-to-swallow mooncake using 3D printing: Effect of oil and hydrocolloid addition. Food Research International, 164, 112404. https://doi.org/10.1016/j.foodres.2022.112404
Wawryniuk, Z., Brancewicz-Steinmetz, E., & Sawicki, J. (2024). Revolutionizing transportation: an overview of 3D printing in aviation, automotive, and space industries. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-024-14226-y
Wen, Y., Chao, C., Che, Q. T., Kim, H. W., & Park, H. J. (2023). Development of plant-based meat analogs using 3D printing: Status and opportunities. Trends in Food Science & Technology, 132, 76–92. https://doi.org/10.1016/j.tifs.2022.12.010
Wu, D., Wu, W., Zhang, N., Soladoye, O. P., Aluko, R. E., Zhang, Y., & Fu, Y. (2024). Tailoring soy protein/corn zein mixture by limited enzymatic hydrolysis to improve digestibility and functionality. Food Chemistry. X, 23, 101550–101550. https://doi.org/10.1016/j.fochx.2024.101550
Xie, D., Hu, H., Huang, Q., & Lu, X. (2023). Development and characterization of food-grade bigel system for 3D printing applications: Role of oleogel/hydrogel ratios and emulsifiers. 139, 108565–108565. https://doi.org/10.1016/j.foodhyd.2023.108565
Xu, D., Liu, Z., An, Z., Hu, L., Li, H., Mo, H., & Subrota Hati. (2023). Incorporation of probiotics into 3D printed Pickering emulsion gel stabilized by tea protein/xanthan gum. Food Chemistry, 409, 135289–135289. https://doi.org/10.1016/j.foodchem.2022.135289
Xu, M., Xu, Y., Ji, S., Amel Thanina Amrouche, Li, Y., Zhou, Z., Shen, J., Li, K., & Lu, B. (2024). Investigation of the 3D printability of modified starch-based inks and their formation mechanism: Application in ice cream. Food Hydrocolloids, 154, 110038–110038. https://doi.org/10.1016/j.foodhyd.2024.110038
You, S., Huang, Q., & Lu, X. (2023). Development of fat-reduced 3D printed chocolate by substituting cocoa butter with water-in-oil emulsions. Food Hydrocolloids, 135, 108114. https://doi.org/10.1016/j.foodhyd.2022.108114
Yun, J. S., Park, T.-W., Jeong, Y. H., & Cho, J. H. (2016). Development of ceramic-reinforced photopolymers for SLA 3D printing technology. Applied Physics A, 122(6). https://doi.org/10.1007/s00339-016-0157-x
Zhang, J., Li, Y., Cai, Y., Ahmad, I., Zhang, A., Ding, Y., Qiu, Y., Zhang, G., Tang, W., & Lyu, F. (2022). Hot extrusion 3D printing technologies based on starchy food: A review. Carbohydrate Polymers, 294, 119763. https://doi.org/10.1016/j.carbpol.2022.119763
Zhang, J. Y., Pandya, J. K., McClements, D. J., Lu, J., & Kinchla, A. J. (2021). Advancements in 3D food printing: a comprehensive overview of properties and opportunities. Critical Reviews in Food Science and Nutrition, 1–18. https://doi.org/10.1080/10408398.2021.1878103
Zheng, L., Li, D., Wang, Y., & Wang, L. (2025). Co-regulation of gelatin content and Hofmeister effect on 3D-printed high internal phase emulsion gel characteristics for resveratrol delivery. Food Hydrocolloids, 158, 110574. https://doi.org/10.1016/j.foodhyd.2024.110574
Zheng, Z., Zhang, M., & Liu, Z. (2021). Investigation on evaluating the printable height and dimensional stability of food extrusion-based 3D printed foods. Journal of Food Engineering, 306, 110636. https://doi.org/10.1016/j.jfoodeng.2021.110636
Zhong, Y., Wang, B., Weiqiao Lv, Wu, Y., Yinqiao Lv, & Sheng, S. (2024). Recent research and applications in lipid-based food and lipid-incorporated bioink for 3D printing. Food Chemistry, 458, 140294–140294. https://doi.org/10.1016/j.foodchem.2024.140294
Zhu, J., Wu, P., Chao, Y., Yu, J., Zhu, W., Liu, Z., & Xu, C. (2022). Recent advances in 3D printing for catalytic applications. Chemical Engineering Journal, 433, 134341. https://doi.org/10.1016/j.cej.2021.134341
Zhu, S., Vazquez Ramos, P., Heckert, O. R., Stieger, M., van der Goot, A. J., & Schutyser, M. (2022). Creating protein-rich snack foods using binder jet 3D printing. Journal of Food Engineering, 332, 111124. https://doi.org/10.1016/j.jfoodeng.2022.111124
Zhu, S., Ruiz de Azua, I. V., Feijen, S., van der Goot, A. J., Schutyser, M., & Stieger, M. (2021). How macroscopic structure of 3D printed protein bars filled with chocolate influences instrumental and sensory texture. LWT, 151, 112155. https://doi.org/10.1016/j.lwt.2021.112155
Zub, K., Hoeppener, S., & Schubert, U. S. (2022). Inkjet Printing and 3D Printing Strategies for Biosensing, Analytical and Diagnostic Applications. Advanced Materials, 2105015. https://doi.org/10.1002/adma.202105015
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Matheus Lourenço; Maria Teresa Pedrosa Silva Clerici; Luan Ramos da Silva; Marcos Vinícius Flores Miranda Nolasco
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.