A importância da utilização racional de antibióticos na redução dos impactos ambientais e na saúde pública: Uma revisão crítica

Autores

DOI:

https://doi.org/10.33448/rsd-v14i2.48271

Palavras-chave:

Uso racional de antibióticos; Resistência de antibióticos; Genes de resistência bacteriana; Saúde Pública; Meio Ambiente.

Resumo

O consumo de antibióticos na saúde humana e animal aumentou significativamente ao longo dos anos, levando ao uso irracional e à disseminação da resistência a antibióticos em bactérias. Este estudo tem como objetivo investigar o impacto da resistência a antibióticos no meio ambiente e na saúde pública por meio de uma revisão narrativa de artigos e relatórios publicados entre 2014 e 2024. As buscas foram realizadas usando diferentes bancos de dados e os termos de pesquisa foram “contaminação por medicamentos”, “contaminação da água”, “resíduos médicos”, “resistência a medicamentos”, “antibióticos”, “uso racional de medicamentos” e “meio ambiente”, e foram usados diferentes bancos de dados. Os resultados mostram que as excreções animais e o descarte inadequado de antibióticos facilitaram a disseminação de genes de resistência por meio da contaminação de rios e fontes de água e do consumo de carne e alimentos contaminados. Isso afetou a saúde pública por meio da ineficácia dos antibióticos e do aumento da mortalidade por infecções com bactérias resistentes a antibióticos. O uso racional de antibióticos, combinado com a educação em saúde, é essencial para evitar o uso irracional e o descarte inadequado de antibióticos. Essas abordagens podem ajudar a reduzir o impacto sobre a saúde pública e o meio ambiente.

Referências

Agência Nacional de Vigilância Sanitária. (2018). Resolução RDC nº 222, de 28 de março de 2018. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2018/rdc0222_28_03_2018.pdf

Barlow, M., & Hall, B. G. (2002). Phylogenetic analysis shows that the OXA beta-lactamase genes have been on plasmids for millions of years. Journal of molecular evolution, 55(3), 314–321. https://doi.org/10.1007/S00239-002-2328-Y

Bartsch, A., Ives, C. M., Kattner, C., Pein, F., Diehn, M., Tanabe, M., Munk, A., Zachariae, U., Steinem, C., & Llabrés, S. (2021). An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(6), 183601. https://doi.org/10.1016/J.BBAMEM.2021.183601

Bergeron, S., Boopathy, R., Nathaniel, R., Corbin, A., & LaFleur, G. (2015). Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. International Biodeterioration & Biodegradation, 102, 370–374. https://doi.org/10.1016/J.IBIOD.2015.04.017.

Brasil. (2020). Decreto nº 10.388, de 5 de junho de 2020. https://www.in.gov.br/en/web/dou/-/decreto-n-10.388-de-5-de-junho-de-2020-260391756

Casarin, S. T., Porto, A. R., Gabatz, R. I. B., Bonow, C. A., Ribeiro, J. P., & Mota, M. S. (2020). Tipos de revisão de literatura: considerações das editoras do Journal of Nursing and Health / Types of literature review: considerations of the editors of the Journal of Nursing and Health. Journal of Nursing and Health, 10(5). https://doi.org/10.15210/jonah.v10i5.19924

Cecchini, M., Langer, J., & Slawomirski, L. (2015). ANTIMICROBIAL RESISTANCE IN G7 COUNTRIES AND BEYOND: Economic Issues, Policies and Options for Action. OECD Publishing. https://www.oecd.org/content/dam/oecd/en/publications/reports/2015/02/antimicrobial-resistance-in-g7-countries-and-beyond_97573ab0/5ea8ed24-en.pdf

Center for Disease Control and Prevention. (2022). Antimicrobial Resistance Threats in the United States, 2021-2022 | Antimicrobial Resistance | CDC. https://www.cdc.gov/antimicrobial-resistance/data-research/threats/update-2022.html

Center for Disease Control and Prevention. (2019). Antibiotic Resistance Threats in the United States, 2019. U.S. Department of Health and Human Services. https://www.cdc.gov/antimicrobial-resistance/media/pdfs/2019-ar-threats-report-508.pdf

Cepas, V., López, Y., Muñoz, E., Rolo, D., Ardanuy, C., Martí, S., Xercavins, M., Horcajada, J. P., Bosch, J., & Soto, S. M. (2019). Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Microbial drug resistance (Larchmont, N.Y.), 25(1), 72–79. https://doi.org/10.1089/MDR.2018.0027

Choi, U., & Lee, C. R. (2019). Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in Escherichia coli. Frontiers in Microbiology, 10(APR), 458574. https://doi.org/10.3389/FMICB.2019.00953/BIBTEX

Conselho Federal de Farmácia. (2013). Resolução nº 585, de 29 de agosto de 2013.https://www.cff.org.br/userfiles/file/resolucoes/585.pdf

Dcosta, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477(7365), 457–461. https://doi.org/10.1038/NATURE10388

Deloitte. (2023). 14th annual pharmaceutical innovation report: balancing the R&D equation. https://www2.deloitte.com/content/dam/Deloitte/us/Documents/life-sciences-health-care/us-rd-roi-14th-edition.pdf

Fang, L., Chen, C., Li, S. Y., Ye, P., Shi, Y., Sharma, G., Sarkar, B., Shaheen, S. M., Lee, S. S., Xiao, R., & Chen, X. (2023). A comprehensive and global evaluation of residual antibiotics in agricultural soils: Accumulation, potential ecological risks, and attenuation strategies. Ecotoxicology and Environmental Safety, 262, 115175. https://doi.org/10.1016/J.ECOENV.2023.115175

Fleming, A. (1929). On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzæ. British journal of experimental pathology, 10(3), 226. https://pmc.ncbi.nlm.nih.gov/articles/PMC2048009/

Food and drugs administration. (2018). Clinical Research | FDA. https://www.fda.gov/patients/drug-development-process/step-3-clinical-research

Founou, R. C., Founou, L. L., & Essack, S. Y. (2017). Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLOS ONE, 12(12), e0189621. https://doi.org/10.1371/JOURNAL.PONE.0189621

Golan, D. E., Tashjian JR., A. H., Armstrong, E. J., & Armstrong, A. W. (2021). Princípios de Farmacologia - A Base Fisiopatológica da Farmacologia (3o ed). Guanabara Koogan.

Gómez-Gómez, C., Blanco-Picazo, P., Brown-Jaque, M., Quirós, P., Rodríguez-Rubio, L., Cerdà-Cuellar, M., & Muniesa, M. (2019). Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces. Scientific reports, 9(1). https://doi.org/10.1038/S41598-019-49898-0

Goodman, LouisS., & Gilman, A. G. (2019). Goodman and Gilman Pharmacological Basis of Therapeutics (13o ed). Mc Graw Hill.

Gu, D., Feng, Q., Guo, C., Hou, S., Lv, J., Zhang, Y., Yuan, S., & Zhao, X. (2019). Occurrence and Risk Assessment of Antibiotics in Manure, Soil, Wastewater, Groundwater from Livestock and Poultry Farms in Xuzhou, China. Bulletin of environmental contamination and toxicology, 103(4), 590–596. https://doi.org/10.1007/s00128-019-02692-0

Hanafiah, A., Sukri, A., Yusoff, H., Chan, C. S., Hazrin-Chong, N. H., Salleh, S. A., & Neoh, H. M. (2024). Insights into the Microbiome and Antibiotic Resistance Genes from Hospital Environmental Surfaces: A Prime Source of Antimicrobial Resistance. Antibiotics, 13(2), 127. https://doi.org/10.3390/antibiotics13020127

Hanna, N., Tamhankar, A. J., & Stålsby Lundborg, C. (2023). Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: a systematic review and probabilistic environmental hazard assessment. The Lancet. Planetary health, 7(1), e45–e54. https://doi.org/10.1016/S2542-5196(22)00254-6

Hassoun-Kheir, N., Stabholz, Y., Kreft, J. U., de la Cruz, R., Romalde, J. L., Nesme, J., Sørensen, S. J., Smets, B. F., Graham, D., & Paul, M. (2020). Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. The Science of the total environment, 743. https://doi.org/10.1016/J.SCITOTENV.2020.140804

Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. Lancet (London, England), 387(10014), 176–187. https://doi.org/10.1016/S0140-6736(15)00473-0

Huebner, C., Flessa, S., & Huebner, N. O. (2019). The economic impact of antimicrobial stewardship programmes in hospitals: a systematic literature review. The Journal of hospital infection, 102(4), 369–376. https://doi.org/10.1016/J.JHIN.2019.03.002

Insani, W. N., Qonita, N. A., Jannah, S. S., Nuraliyah, N. M., Supadmi, W., Gatera, V. A., Alfian, S. D., & Abdulah, R. (2020). Improper disposal practice of unused and expired pharmaceutical products in Indonesian households. Heliyon, 6(7). https://doi.org/10.1016/J.HELIYON.2020.E04551

Karkman, A., Pärnänen, K., & Larsson, D. G. J. (2019). Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications 2019 10:1, 10(1), 1–8. https://doi.org/10.1038/s41467-018-07992-3

Klein, E. Y., Impalli, I., Poleon, S., Denoel, P., Cipriano, M., Van Boeckel, T. P., Pecetta, S., Bloom, D. E., & Nandi, A. (2024). Global trends in antibiotic consumption during 2016-2023 and future projections through 2030. Proceedings of the National Academy of Sciences of the United States of America, 121(49). https://doi.org/10.1073/PNAS.2411919121

Langford, B. J., Soucy, J. P. R., Leung, V., So, M., Kwan, A. T. H., Portnoff, J. S., Bertagnolio, S., Raybardhan, S., MacFadden, D. R., & Daneman, N. (2023). Antibiotic resistance associated with the COVID-19 pandemic: a systematic review and meta-analysis. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 29(3), 302–309. https://doi.org/10.1016/J.CMI.2022.12.006

Larsson, D. G. J., & Flach, C. F. (2021). Antibiotic resistance in the environment. Nature Reviews Microbiology 2021 20:5, 20(5), 257–269. https://doi.org/10.1038/s41579-021-00649-x

Lawrence, J., O’Hare, D., van Batenburg-Sherwood, J., Sutton, M., Holmes, A., & Rawson, T. M. (2024). Innovative approaches in phenotypic beta-lactamase detection for personalised infection management. Nature communications, 15(1), 9070. https://doi.org/10.1038/S41467-024-53192-7

Li, Y., Li, Q., Ji, Z., Andom, O., Wang, X., Guo, X., & Li, Z. (2023). Current Status and Spatiotemporal Evolution of Antibiotic Residues in Livestock and Poultry Manure in China. Agriculture 2023, Vol. 13, Page 1877, 13(10), 1877. https://doi.org/10.3390/AGRICULTURE13101877

Littmann, J., Rid, A., & Buyx, A. (2018). Tackling anti-microbial resistance: ethical framework for rational antibiotic use. European Journal of Public Health, 28(2), 359–363. https://doi.org/10.1093/EURPUB/CKX165

Liu, H. Y., Prentice, E. L., & Webber, M. A. (2024). Mechanisms of antimicrobial resistance in biofilms. npj Antimicrobials and Resistance 2024 2:1, 2(1), 1–10. https://doi.org/10.1038/s44259-024-00046-3

Martínez-Domínguez, J., Sierra-Martínez, O., Galindo-Fraga, A., Trejo-Mejía, J. A., Sánchez-Mendiola, M., Ochoa-Hein, E., Vázquez-Rivera, M., Gutiérrez-Cirlos, C., Naveja, J., & Martínez-González, A. (2022). Antibiotic prescription errors: the relationship with clinical competence in junior medical residents. BMC Medical Education, 22(1), 1–14. https://doi.org/10.1186/S12909-022-03499-0/FIGURES/5.

Mattos, P. C. (2015). Tipos de revisão de literature (1, 1ªed, 1-9). Botucatu, SP: Unesp. https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.pdf.

Mboya, E. A., Sanga, L. A., & Ngocho, J. S. (2018). Irrational use of antibiotics in the Moshi Municipality Northern Tanzania: a cross sectional study. The Pan African medical journal, 31. https://doi.org/10.11604/PAMJ.2018.31.165.15991

McInnes, R. S., McCallum, G. E., Lamberte, L. E., & van Schaik, W. (2020). Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Current opinion in microbiology, 53, 35–43. https://doi.org/10.1016/J.MIB.2020.02.002

Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology spectrum, 4(2). https://doi.org/10.1128/MICROBIOLSPEC.VMBF-0016-2015

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0/ATTACHMENT/4504FC2B-08AE-46D6-BD75-80811DF8B5E6/MMC1.PDF

Naghavi, M., Vollset, S. E., Ikuta, K. S., Swetschinski, L. R., Gray, A. P., Wool, E. E., Aguilar, G. R., Mestrovic, T., Smith, G., Han, C., Hsu, R. L., Chalek, J., Araki, D. T., Chung, E., Raggi, C., Hayoon, A. G., Weaver, N. D., Lindstedt, P. A., Smith, A. E., … Murray, C. J. L. (2024). Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet, 404(10459), 1199–1226. https://doi.org/10.1016/S0140-6736(24)01867-1

Naylor, N. R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., Knight, G. M., & Robotham, J. V. (2018). Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrobial resistance and infection control, 7(1). https://doi.org/10.1186/S13756-018-0336-Y.

Pereira A. S. et al. (2018). Metodologia da pesquisa científica (1, 1ª ed.) [free e-book]. Santa Maria, RS: Ed. UFSM, NTE.

Perry, J., Waglechner, N., & Wright, G. (2016). The Prehistory of Antibiotic Resistance. Cold Spring Harbor perspectives in medicine, 6(6). https://doi.org/10.1101/CSHPERSPECT.A025197

Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and global health, 109(7), 309–318. https://doi.org/10.1179/2047773215Y.0000000030

Rang, H. P., Ritter, J. M., Flower, R. J., & Henderson, G. (2020). Farmacologia (9o ed.). Guanabara Koogan.

Rice, L. B. (2018). Antimicrobial Stewardship and Antimicrobial Resistance. The Medical clinics of North America, 102(5), 805–818. https://doi.org/10.1016/J.MCNA.2018.04.004.

Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta Paulista De Enfermagem, 20(2), v–vi. https://doi.org/10.1590/S0103-21002007000200001.

Sevillya, G., Adato, O., & Snir, S. (2020). Detecting horizontal gene transfer: A probabilistic approach. BMC Genomics, 21(1), 1–11. https://doi.org/10.1186/S12864-019-6395-5/FIGURES/5.

Sijbom, M., Büchner, F. L., Saadah, N. H., Numans, M. E., & De Boer, M. G. J. (2023). Determinants of inappropriate antibiotic prescription in primary care in developed countries with general practitioners as gatekeepers: a systematic review and construction of a framework. BMJ Open, 13(5), e065006. https://doi.org/10.1136/BMJOPEN-2022-065006.

Singh-Phulgenda, S., Antoniou, P., Wong, D. L. F., Iwamoto, K., & Kandelaki, K. (2023). Knowledge, attitudes and behaviors on antimicrobial resistance among general public across 14 member states in the WHO European region: results from a cross-sectional survey. Frontiers in public health, 11. https://doi.org/10.3389/FPUBH.2023.1274818

Sweileh, W. M. (2021). Global research publications on irrational use of antimicrobials: call for more research to contain antimicrobial resistance. Globalization and Health, 17(1), 1–12. https://doi.org/10.1186/S12992-021-00754-9/TABLES/3

Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics (Basel, Switzerland), 9(12), 1–14. https://doi.org/10.3390/ANTIBIOTICS9120918

Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. Bin, Dhama, K., Ripon, M. K. H., Gajdács, M., Sahibzada, M. U. K., Hossain, M. J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of infection and public health, 14(12), 1750–1766. https://doi.org/10.1016/J.JIPH.2021.10.020

United Nations Environment Programme. (2021). Joint Tripartite and UNEP statement on definition of One Health. UNEP. https://www.unep.org/news-and-stories/statements/joint-tripartite-and-unep-statement-definition-one-health

United Nations Environment Programme. (2022). The state of the world's antimicrobial resistance: A report from the United Nations Environment Programme. United Nations Environment Programme.. https://wedocs.unep.org/bitstream/handle/20.500.11822/38373/antimicrobial_R.pdf.

United Nations General Assembly. (2015). Transforming our world: The 2030 agenda for sustainable development. United Nations. https://docs.un.org/en/A/RES/70/1

Walger, P. (2016). [Rational use of antibiotics]. Der Internist, 57(6), 551–568. https://doi.org/10.1007/S00108-016-0071-5

Wang, L. S., Aziz, Z., Wang, E. S., & Chik, Z. (2024). Unused medicine take-back programmes: a systematic review. Journal of Pharmaceutical Policy and Practice, 17(1), 2395535. https://doi.org/10.1080/20523211.2024.2395535

Wang, X., Lin, L., Xuan, Z., Li, L., & Zhou, X. (2018). Keeping Antibiotics at Home Promotes Self-Medication with Antibiotics among Chinese University Students. International journal of environmental research and public health, 15(4). https://doi.org/10.3390/IJERPH15040687

Wang, Y., Venter, H., & Ma, S. (2016). Efflux Pump Inhibitors: A Novel Approach to Combat Efflux-Mediated Drug Resistance in Bacteria. Current drug targets, 17(6), 702–719. https://doi.org/10.2174/1389450116666151001103948

Wilkinson, J. L., Boxall, A. B. A., Kolpin, D. W., Leung, K. M. Y., Lai, R. W. S., Galban-Malag, C., Adell, A. D., Mondon, J., Metian, M., Marchant, R. A., Bouzas-Monroy, A., Cuni-Sanchez, A., Coors, A., Carriquiriborde, P., Rojo, M., Gordon, C., Cara, M., Moermond, M., Luarte, T., Teta, C. (2022). Pharmaceutical pollution of the world’s rivers. Proceedings of the National Academy of Sciences of the United States of America, 119(8), e2113947119. https://doi.org/10.1073/PNAS.2113947119/SUPPL_FILE/PNAS.2113947119.SD12.XLSX

World Animal Protection. (2020). Global public health and animal protection: Addressing the critical connection. World Animal Protection.https://www.worldanimalprotection.us/siteassets/reports-programmatic/global-public-health-technical-report.pdf

World Health Organization. (2023). AWaRe classification of antibiotics for evaluation and monitoring of use, 2023. World Health Organization. https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2023.04

World Health Organization (2022a). 2021 antibacterial agents in clinical and preclinical development: an overview and analysis. https://iris.who.int/bitstream/handle/10665/354545/9789240047655-eng.pdf?sequence=1

World Health Organization (2022b). Global report on infection prevention and control. https://iris.who.int/bitstream/handle/10665/354489/9789240051164-eng.pdf?sequence=1

World Health Organization (2024). WHO Bacterial Priority Pathogens List, 2024. https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1

Zhu, T., Chen, T., Cao, Z., Zhong, S., Wen, X., Mi, J., Ma, B., Zou, Y., Zhang, N., Liao, X., Wang, Y., & Wu, Y. (2021). Antibiotic resistance genes in layer farms and their correlation with environmental samples. Poultry Science, 100(12), 101485. https://doi.org/10.1016/J.PSJ.2021.101485

Downloads

Publicado

20/02/2025

Como Citar

BALTAZAR, L. S.; CAMPOS, N. da S. A importância da utilização racional de antibióticos na redução dos impactos ambientais e na saúde pública: Uma revisão crítica. Research, Society and Development, [S. l.], v. 14, n. 2, p. e7014248271, 2025. DOI: 10.33448/rsd-v14i2.48271. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/48271. Acesso em: 30 mar. 2025.

Edição

Seção

Ciências da Saúde