Estabilización de desechos porcinos: Una revisión sistemática de su impacto ambiental y alternativas tecnológicas
DOI:
https://doi.org/10.33448/rsd-v14i3.48315Palabras clave:
Estiércol Porcino; Purines Porcinos; Compostaje; Biogás; Anaeróbico; Codigestión.Resumen
El manejo inadecuado de los desechos fecales porcinos pone en peligro la salud humana y el medio ambiente, provocando la contaminación del suelo, la propagación de zoonosis y la eutrofización de los cuerpos de agua. Estos desechos ricos en nutrientes también contienen genes de resistencia a los antibióticos (ARG), lo que supone un importante riesgo para la salud pública. Esta revisión sistemática tiene como objetivo identificar los parámetros operativos óptimos para la estabilización de los desechos porcinos, centrándose en la producción de compost, biosólidos y biogás, teniendo en cuenta la composición específica de estos desechos. Se analizan los parámetros operativos para la estabilización de los desechos, incluido el compostaje y la generación de biogás. Los hallazgos tienen como objetivo identificar problemas y proponer soluciones para una gestión más sostenible y eficiente de estos desechos, protegiendo así el medio ambiente y la salud pública.
Citas
Ahmed, A., Ijaz, M., Ayyub, R. M., Ghaffar, A., Ghauri, H. N., Aziz, M. U., Ali, S., Altaf, M., Awais, M., Naveed, M., Nawab, Y., & Javed, M. U. (2020). Balantidium coli in domestic animals: An emerging protozoan pathogen of zoonotic significance. Acta Tropica, 203, 105298. https://doi.org/10.1016/j.actatropica.2019.105298
Bawm, S., Htun, L. L., Chel, H. M., Khaing, Y., Hmoon, M. M., Thein, S. S., Win, S. Y., Soe, N. C., Thaw, Y. N., Hayashi, N., Win, M. M., Nonaka, N., Katakura, K., & Nakao, R. (2024). A survey of gastrointestinal helminth infestation in smallholder backyard pigs and the first molecular identification of the two zoonotic helminths Ascaris suum and Trichuris suis in Myanmar. BMC Veterinary Research, 20(1), 139. https://doi.org/10.1186/s12917-024-03998-w
Beily, M. E., Young, B. J., Bres, P. A., Riera, N. I., Wang, W., Crespo, D. E., & Komilis, D. (2023). Relationships among Physicochemical, Microbiological, and Parasitological Parameters, Ecotoxicity, and Biochemical Methane Potential of Pig Slurry. Sustainability, 15(4), 3172. https://doi.org/10.3390/su15043172
Boyko, O., Brygadyrenko, V., Chernysh, Y., Chubur, V., & Roubík, H. (2024). Possibilities of decontaminating organic waste from swine-farming complexes using anaerobic digestion. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-024-05914-6
Brooks, J., Adeli, A., & Mclaughlin, M. (2014). Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water research, 57C, 96-103. https://doi.org/10.1016/j.watres.2014.03.017
Çelen, I., Buchanan, J. R., Burns, R. T., Bruce Robinson, R., & Raj Raman, D. (2007). Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure. Water Research, 41(8), 1689-1696. https://doi.org/10.1016/j.watres.2007.01.018
Chaudhary, B., Parajuli, R. P., & Dhakal, P. (2023). Survey of intestinal parasites in swine farms raised in Western Nepal. Veterinary Medicine and Science, 9(5), 2107-2117. https://doi.org/10.1002/vms3.1206
Chen, B., Zhu, Y., Wu, M., Xiao, Y., Huang, J., Lin, C., & Weng, B. (2024). Research Advancements in Swine Wastewater Treatment and Resource-Based Safe Utilization Management Technology Model Construction. Water, 16(5), 661. https://doi.org/10.3390/w16050661
Chen, J., Yu, Z., Michel, F. C., Wittum, T., & Morrison, M. (2007). Development and Application of Real-Time PCR Assays for Quantification of erm Genes Conferring Resistance to Macrolides-Lincosamides-Streptogramin B in Livestock Manure and Manure Management Systems. Applied and Environmental Microbiology, 73(14), 4407-4416. https://doi.org/10.1128/AEM.02799-06
Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057
Chen, Z., Zhang, W., Yang, L., Stedtfeld, R. D., Peng, A., Gu, C., Boyd, S. A., & Li, H. (2019). Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. Environmental Pollution, 248, 947-957. https://doi.org/10.1016/j.envpol.2019.02.093
Chuenchart, W., Surendra, K. C., & Khanal, S. K. (2024). Understanding Anaerobic Co-digestion of Organic Wastes through Meta-Analysis. ACS ES&T Engineering, 4(5), 1177-1192. https://doi.org/10.1021/acsestengg.3c00598
Class, C., Silveira, R., Fialho, P., Silva, L., Lobão, L., Amendoeira, M. R., & Barbosa, A. (2022). Family-Run Pig Farms: Research and Extension Activities for Parasite Control in a Municipality in the State of Rio de Janeiro, Brazil. Pathogens, 11(9), 971. https://doi.org/10.3390/pathogens11090971
Couch, M., Agga, G. E., Kasumba, J., Parekh, R. R., Loughrin, J. H., & Conte, E. D. (2019). Abundances of Tetracycline Resistance Genes and Tetracycline Antibiotics during Anaerobic Digestion of Swine Waste. Journal of Environmental Quality, 48(1), 171-178. https://doi.org/10.2134/jeq2018.09.0331
Deng, L., Zheng, D., Zhang, J., Yang, H., Wang, L., Wang, W., He, T., & Zhang, Y. (2023). Treatment and utilization of swine wastewater – A review on technologies in full-scale application. Science of The Total Environment, 880, 163223. https://doi.org/10.1016/j.scitotenv.2023.163223
Domingues, P., Pala, H., & Oliveira, N. (2021). Anaerobic Mesophilic Co-Digestion of Swine Slurry and Hidrolyzate in Batch Reactors: A Case Study. Frontiers in Environmental Science, 9, 684074. https://doi.org/10.3389/fenvs.2021.684074
Duerschner, J., Bartelt-Hunt, S., Eskridge, K. M., Gilley, J. E., Li, X., Schmidt, A. M., & Snow, D. D. (2020). Swine slurry characteristics as affected by selected additives and disinfectants. Environmental Pollution, 260, 114058. https://doi.org/10.1016/j.envpol.2020.114058
El Bied, O., García-Valero, A., Fechtali, T., Faz, Á., & Acosta, J. A. (2021). Purification Performance of Filtration Process for Pig Slurry Using Marine Sands, Silty Loam Soils, Fly Ash and Zeolite. Agronomy, 11(8), 1608. https://doi.org/10.3390/agronomy11081608
El Bied, O., Kessler, M., Terrero, M. A., Fechtali, T., Cano, A. F., & Acosta, J. A. (2021). Turbidity and Chemical Oxygen Demand Reduction from Pig Slurry through a Coagulation Flocculation Process. Agronomy, 11(11), 2158. https://doi.org/10.3390/agronomy11112158
FAO. (2022). Agricultural production statistics 2000-2022. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/3/cc9205en/cc9205en.pdf
Fernández‐Labrada, M., López‐Mosquera, M. E., García, L., Barrio, J. C., & López‐Fabal, A. (2023). Hazards of swine slurry: Heavy metals, bacteriology, and overdosing—Physicochemical models to predict the nutrient value. Animal Science Journal, 94(1), e13849. https://doi.org/10.1111/asj.13849
Fragoso, R. A., Duarte, E. A., & Paiva, J. (2015). Contribution of Coagulation–Flocculation Process for a More Sustainable Pig Slurry Management. Water, Air, & Soil Pollution, 226(5), 131. https://doi.org/10.1007/s11270-015-2388-4
Francisco, C. A. L., Loss, A., Brunetto, G., Gonzatto, R., Giacomini, S. J., Aita, C., Piccolo, M. D. C., Torres, J. L. R., Marchezan, C., Scopel, G., & Vidal, R. F. (2021). Carbon and nitrogen in particle-size fractions of organic matter of soils fertilised with surface and injected applications of pig slurry. Soil Research, 60(1), 65-72. https://doi.org/10.1071/SR21020
Gao, F.-Z., He, L.-Y., Chen, X., Chen, J.-L., Yi, X., He, L.-X., Huang, X.-Y., Chen, Z.-Y., Bai, H., Zhang, M., Liu, Y.-S., & Ying, G.-G. (2023). Swine farm groundwater is a hidden hotspot for antibiotic-resistant pathogenic Acinetobacter. ISME Communications, 3(1), 34. https://doi.org/10.1038/s43705-023-00240-w
García-Valero, A., Acosta, J. A., Faz, Á., Gómez-López, M. D., Carmona, D. M., Terrero, M. A., El Bied, O., & Martínez-Martínez, S. (2024). Swine Wastewater Treatment System Using Constructed Wetlands Connected in Series. Agronomy, 14(1), 143. https://doi.org/10.3390/agronomy14010143
González de Canales Simón, P., del Olmo Martínez, L., Cortejoso Hernández, A., & Arranz Santos, T. (2000). Balantidiasis cólica. Gastroenterología y Hepatología, 23(3), 129-131.
González, R., González, J., Rosas, J. G., Smith, R., & Gómez, X. (2020). Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. C — Journal of Carbon Research, 6(2), 43. https://doi.org/10.3390/c6020043
González, R., Peña, D. C., & Gómez, X. (2022). Anaerobic Co-Digestion of Wastes: Reviewing Current Status and Approaches for Enhancing Biogas Production. Applied Sciences, 12(17), 8884. https://doi.org/10.3390/app12178884
González-Fernández, C., León-Cofreces, C., & García-Encina, P. A. (2008). Different pretreatments for increasing the anaerobic biodegradability in swine manure. Bioresource Technology, 99(18), 8710-8714. https://doi.org/10.1016/j.biortech.2008.04.020
Hall, M. C., Duerschner, J., Gilley, J. E., Schmidt, A. M., Bartelt-Hunt, S. L., Snow, D. D., Eskridge, K. M., & Li, X. (2021). Antibiotic resistance genes in swine manure slurry as affected by pit additives and facility disinfectants. Science of The Total Environment, 761, 143287. https://doi.org/10.1016/j.scitotenv.2020.143287
Han, B., Yang, F., Tian, X., Mu, M., & Zhang, K. (2021). Tracking antibiotic resistance gene transfer at all seasons from swine waste to receiving environments. Ecotoxicology and Environmental Safety, 219, 112335. https://doi.org/10.1016/j.ecoenv.2021.11233
Huang, G. F., Wong, J. W. C., Wu, Q. T., & Nagar, B. B. (2004). Effect of C/N on composting of pig manure with sawdust. Waste Management, 24(8), 805-813. https://doi.org/10.1016/j.wasman.2004.03.011
Ipiales, R. P., Sarrion, A., Diaz, E., De La Rubia, M. A., Diaz-Portuondo, E., Coronella, C. J., & Mohedano, A. F. (2024). Swine manure management by hydrothermal carbonization: Comparative study of batch and continuous operation. Environmental Research, 245, 118062. https://doi.org/10.1016/j.envres.2023.118062
Jensen, L. S., Christensen, M. L., Sommer, S. G., & Schmidt, T. (Eds.). (2013). Animal manure: Recycling, treatment, and management. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118676677
Jokkaew, S., Jantharadej, K., Pokhum, C., Chawengkijwanich, C., & Suwannasilp, B. B. (2022). Free and Encapsulated Phosphate-Solubilizing Bacteria for the Enhanced Dissolution of Swine Wastewater-Derived Struvite—An Attractive Approach for Green Phosphorus Fertilizer. Sustainability, 14(19), 12627. https://doi.org/10.3390/su141912627
Kadam, R., Jo, S., Lee, J., Khanthong, K., Jang, H., & Park, J. (2024). A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management. Energies, 17(3), 546. https://doi.org/10.3390/en17030546
Kafle, G. K., & Chen, L. (2016). Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Management, 48, 492-502. https://doi.org/10.1016/j.wasman.2015.10.021
Karki, R., Chuenchart, W., Surendra, K. C., Shrestha, S., Raskin, L., Sung, S., Hashimoto, A., & Kumar Khanal, S. (2021). Anaerobic co-digestion: Current status and perspectives. Bioresource Technology, 330, 125001. https://doi.org/10.1016/j.biortech.2021.125001
Korchef, A., Abouda, S., & Souid, I. (2023). Optimizing Struvite Crystallization at High Stirring Rates. Crystals, 13(4), 711. https://doi.org/10.3390/cryst13040711
Kumara, B., & Varma, A. (2016). Biomethanization. En B. Kumara & A. Varma, Microbial Resources for Sustainable Energy (1.a ed., Vol. 1, pp. 35-122). Springer International Publishing. https://doi.org/10.1007/978-3-319-33778-4_2
Lang, Q., Chen, M., Guo, Y., Liu, Z., & Gai, C. (2019). Effect of hydrothermal carbonization on heavy metals in swine manure: Speciation, bioavailability and environmental risk. Journal of Environmental Management, 234, 97-103. https://doi.org/10.1016/j.jenvman.2018.12.073
Lang, Q., Zhang, B., Liu, Z., Jiao, W., Xia, Y., Chen, Z., Li, D., Ma, J., & Gai, C. (2019). Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization. Journal of Environmental Management, 233, 440-446. https://doi.org/10.1016/j.jenvman.2018.12.072
Lourinho, G., Rodrigues, L. F. T. G., & Brito, P. S. D. (2020). Recent advances on anaerobic digestion of swine wastewater. International Journal of Environmental Science and Technology, 17(12), 4917-4938. https://doi.org/10.1007/s13762-020-02793-y
Marti, R., Scott, A., Tien, Y.-C., Murray, R., Sabourin, L., Zhang, Y., & Topp, E. (2013). Impact of Manure Fertilization on the Abundance of Antibiotic-Resistant Bacteria and Frequency of Detection of Antibiotic Resistance Genes in Soil and on Vegetables at Harvest. Applied and Environmental Microbiology, 79(18), 5701-5709. https://doi.org/10.1128/AEM.01682-13
Matiz-Villamil, A., Méndez-Carranza, K. J., Pascagaza-Pulido, A. F., Rendón-Rendón, T., Noriega-Noriega, J., & Pulido-Villamarín, A. (2023). Trends in the management of organic swine farm waste by composting: A systematic review. Heliyon, 9(8), e18208. https://doi.org/10.1016/j.heliyon.2023.e18208
McIntosh, S., Hunt, L., Thompson Brewster, E., Rose, A., Thornton, A., & Erler, D. (2022). Struvite Production from Dairy Processing Waste. Sustainability, 14(23), 15807. https://doi.org/10.3390/su142315807
Mecabô Júnior, J., Bertol, I., Santos, M. A. D. N. D., Kaufmann, D. S., & Oliveira, M. F. D. (2024). Soil, water and p losses by water erosion in soil treated with pig slurry. DELOS Desarrollo Local Sostenible, 17(59), e1836. https://doi.org/10.55905/rdelosv17.n59-008
Meng, X., Jin, M., Feng, Q., Sha, A., Bai, S., & Zhao, X. (2023). Resource and Energy Utilization of Swine Wastewater Treatment: Recent Progress and Future Directions. Separations, 10(12), 591. https://doi.org/10.3390/separations10120591
Montalvo, S., Huiliñir, C., Castillo, A., Pagés‐Díaz, J., & Guerrero, L. (2020). Carbon, nitrogen and phosphorus recovery from liquid swine wastes: A review. Journal of Chemical Technology & Biotechnology, 95(9), 2335-2347. https://doi.org/10.1002/jctb.6336
Myers, G. M., Andersen, D. S., Martens, B. J., & Raman, D. R. (2023). Cost Assessment of Centralizing Swine Manure and Corn Stover Co-Digestion Systems. Energies, 16(11), 4315. https://doi.org/10.3390/en16114315
Owusu-Twum, M. Y., & Sharara, M. A. (2020). Sludge management in anaerobic swine lagoons: A review. Journal of Environmental Management, 271, 110949. https://doi.org/10.1016/j.jenvman.2020.110949
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://doi.org/10.1186/s13643-021-01626-4
Palmer, D. G. (1981). Biogas: Energy from Animal Waste (1.a ed., 1-1). Solar Energy Research Institute.
Peng, S., Wang, Y., Zhou, B., & Lin, X. (2015). Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. Science of The Total Environment, 506-507, 279-286. https://doi.org/10.1016/j.scitotenv.2014.11.010
Qian, X., Gu, J., Sun, W., Wang, X.-J., Su, J.-Q., & Stedfeld, R. (2018). Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. Journal of Hazardous Materials, 344, 716-722. https://doi.org/10.1016/j.jhazmat.2017.11.020
Qian, X., Shen, G., Wang, Z., Guo, C., Liu, Y., Lei, Z., & Zhang, Z. (2014). Co-composting of livestock manure with rice straw: Characterization and establishment of maturity evaluation system. Waste Management, 34(2), 530-535. https://doi.org/10.1016/j.wasman.2013.10.007
Rayne, N., & Aula, L. (2020). Livestock Manure and the Impacts on Soil Health: A Review. Soil Systems, 4(4), 64. https://doi.org/10.3390/soilsystems4040064
Samoraj, M., Mironiuk, M., Izydorczyk, G., Witek-Krowiak, A., Szopa, D., Moustakas, K., & Chojnacka, K. (2022). The challenges and perspectives for anaerobic digestion of animal waste and fertilizer application of the digestate. Chemosphere, 295, 133799. https://doi.org/10.1016/j.chemosphere.2022.133799
Sanz, C., Casado, M., Navarro-Martin, L., Tadić, Đ., Parera, J., Tugues, J., Bayona, J. Ma., & Piña, B. (2021). Antibiotic and antibiotic-resistant gene loads in swine slurries and their digestates: Implications for their use as fertilizers in agriculture. Environmental Research, 194, 110513. https://doi.org/10.1016/j.envres.2020.110513
Selvam, A., Xu, D., Zhao, Z., & Wong, J. W. C. (2012). Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresource Technology, 126, 383-390. https://doi.org/10.1016/j.biortech.2012.03.045
Sivamani, S., Saikat, B., Naveen Prasad, B. S., Baalawy, A. A. S., & Al-Mashali, S. M. A. (2021). A Comprehensive Review on Microbial Technology for Biogas Production. En M. Srivastava, N. Srivastava, & R. Singh (Eds.), Bioenergy Research: Revisiting Latest Development (pp. 53-78). Springer Singapore. https://doi.org/10.1007/978-981-33-4615-4_3
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039
Song, X., Zhang, K., Han, B., Liang, J., Zhai, Z., & Du, L. (2016). Anaerobic Co-digestion of Pig Manure with Dried Maize Straw. BioResources, 11(4), 8914-8928. https://doi.org/10.15376/biores.11.4.8914-8928
Sousa, I. D. P., Rosa, A. P., Almeida, G. K., Rocha, D. N., Neves, T. D. A., & Borges, A. C. (2024). Integrated Assessment of Methane Production from the Co-Digestion of Swine Wastewater and Other Organic Wastes. Sustainability, 16(14), 5938. https://doi.org/10.3390/su16145938
Sui, Q., Zhang, J., Chen, M., Tong, J., Wang, R., & Wei, Y. (2016). Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater. Environmental Pollution, 213, 751-759. https://doi.org/10.1016/j.envpol.2016.03.038
Sylvestre, S., Lux Hoppe, E., & Oliveira, R. (2014). Removal of Total Coliforms, Thermotolerant Coliforms, and Helminth Eggs in Swine Production Wastewater Treated in Anaerobic and Aerobic Reactors. International journal of microbiology, 2014, 757934. https://doi.org/10.1155/2014/757934
Symeonidou, I., Tassis, P., Gelasakis, A. Ι., Tzika, E. D., & Papadopoulos, E. (2020). Prevalence and Risk Factors of Intestinal Parasite Infections in Greek Swine Farrow-To-Finish Farms. Pathogens, 9(7), 556. https://doi.org/10.3390/pathogens9070556
Tian, P., Gong, B., Bi, K., Liu, Y., Ma, J., Wang, X., Ouyang, Z., & Cui, X. (2023). Anaerobic Co-Digestion of Pig Manure and Rice Straw: Optimization of Process Parameters for Enhancing Biogas Production and System Stability. International Journal of Environmental Research and Public Health, 20(1), 804. https://doi.org/10.3390/ijerph20010804
Tiquia, S. M. (2005). Microbiological parameters as indicators of compost maturity. Journal of Applied Microbiology, 99(4), 816-828. https://doi.org/10.1111/j.1365-2672.2005.02673.x
Tiquia, S. M., Richard, T. L., & Honeyman, M. S. (2002). Carbon, nutrient, and mass loss during composting. Nutrient Cycling in Agroecosystems, 62(15), 24. https://doi.org/10.1023/A:1015137922816
Van Epps, A., & Blaney, L. (2016). Antibiotic Residues in Animal Waste: Occurrence and Degradation in Conventional Agricultural Waste Management Practices. Current Pollution Reports, 2(3), 135-155. https://doi.org/10.1007/s40726-016-0037-1
Varma, V. S., Parajuli, R., Scott, E., Canter, T., Lim, T. T., Popp, J., & Thoma, G. (2021). Dairy and swine manure management – Challenges and perspectives for sustainable treatment technology. Science of The Total Environment, 778, 146319. https://doi.org/10.1016/j.scitotenv.2021.146319
Wang, B., Song, L., Li, W., Hou, L., Li, J., Xu, X., & Sheng, G. (2023). Distribution and migration of antibiotic resistance genes, as well as their correlation with microbial communities in swine farm and its surrounding environments. Environmental Pollution, 316, 120618. https://doi.org/10.1016/j.envpol.2022.120618
Wang, J., & Davis, R. E. (2020). Ascaris. Current Biology, 30(10), R423-R425. https://doi.org/10.1016/j.cub.2020.02.064
Wong, J. W. C., & Selvam, A. (2009). Reduction of indicator and pathogenic microorganisms in pig manure through fly ash and lime addition during alkaline stabilization. Journal of Hazardous Materials, 169(1-3), 882-889. https://doi.org/10.1016/j.jhazmat.2009.04.033
Yang, F., Han, B., Gu, Y., & Zhang, K. (2020). Swine liquid manure: A hotspot of mobile genetic elements and antibiotic resistance genes. Scientific Reports, 10(1), 15037. https://doi.org/10.1038/s41598-020-72149-6
Zalewska, Aleksandra Blazejewska, Agnieszka Czapko, & Magdalena Popowska. (2021). Frontiers | Antibiotics and Antibiotic Resistance Genes in Animal Manure – Consequences of Its Application in Agriculture. https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2021.610656/full
Zhang, Q., Zeng, L., Fu, X., Pan, F., Shi, X., & Wang, T. (2021). Comparison of anaerobic co-digestion of pig manure and sludge at different mixing ratios at thermophilic and mesophilic temperatures. Bioresource Technology, 337, 125425. https://doi.org/10.1016/j.biortech.2021.125425
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Wendy Zambrano; Carlos Banchón

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.