The use of organic fertilizers increases the growth of soybeans in soil infested by Pratylenchus brachyurus

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4876

Keywords:

Glycine max; Root lesion nematode; Organic fertilization.

Abstract

Phytonematodes cause considerable losses in agricultural production worldwide, their main form of control is through the use of chemical nematicides. However, this form of control is inefficient due to the high costs and negative impacts on human health and the environment, requiring new control alternatives. The use of organic fertilizers can modify and provide improvements in the quality of the soil promoting the growth of plants and can also reduce the incidence of phytomatomatoids. The objective of the study was to evaluate the potential of three organic fertilizers, applied in solid or liquid form, in the control of Pratylenchus brachyurus in soybeans. The experiment was carried out in a 3x2+1 factorial scheme, with three replications. Two organic compounds and a vermicompost were applied to the soil in solid or liquid form and the control received only mineral fertilizer. For this, soybean plants were grown in a greenhouse, with the addition of 2,000 specimens of P. brachyurus to the soil. The soybean produced greater dry mass of the aerial part when the three organic fertilizers were added to the soil in solid form in relation to the treatment with mineral fertilization. Among the forms of application, the solid provided better performance in the parameters of the plant superior to the liquid. The solid vermicompost increases the dry mass of the aerial part of the plant grown in soil infested with P. brachyurus.

Author Biography

Valeria Ortaça Portela, Universidade Federal de Santa Maria

Formada em Agronomia pela Universidade Federal Fronteira Sul, Mestre em Ciência do Solo pela Universidade Federal de Santa Maria, e atualmente cursando o Doutorado pela mesma Instituição.

References

Avelino, A.C., Faria, D.A., Oliveir, L.D., Terzi, B.G., Filho, A.S.C., Afonso, M.F., Rondon, O.H.S., Arieira, G.O., Abreu, J.G., Peixoto, W.M. & Rossi, M. (2019). Phytonematodes in Integrated Crop-livestock Systems of Tropical Regions. Journal of Experimental Agriculture International, 37(1): 1-13. doi:10.9734/jeai/2019/v37i430275

Brasil. (2020). Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Instrução Normativa 25, de 23 de julho de 2009. Diário Oficial, Brasília, DF, 28 de junho de 2009. Seção 1, p. 20. Disponível em: http://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-20-de-24-de-abril-de-2020-254000645. Acesso em: 20 abril 2020.

Byrd, J.D.W., Kirkpatrick, T. & Barker, K.R. (1983). An improved technique for clearing and staining plant tissues for detection of nematodes. Journal of Nematology, 15(1): 142-3.

Castro, C.S., Lobo, U.G.M., Rodrigues, L.M., Backes, C., Santos, A.J.M. (2016). Eficiência de utilização de adubação orgânica em forrageiras tropicais. Revista de Agricultura Neotropical, 3, (4), 48-54.

Comissão de Química e Fertilidade Do Solo (CQFS/RS-SC) RS-SC. (2004). Manual de Adubação e Calagem para os Estados do Rio Grande do Sul e Santa Catarina. Porto Alegre: Sociedade Brasileira de Ciência do Solo.

Domínguez, J., Lazcano, C. & Gomez-Brandon, M. (2010). Influencia del vermicompost en el crecimiento de las plantas. Aportes para la elaboración de un concepto objetivo. Acta Zoológica Mexicana, 26 (2): 359-371.

Domínguez, J., Martínez-Cordeiro, H., Álvarez-Casas, M. & Lores, M. (2014). Vermicomposting grape marc yields high quality organic biofertilizer and bioactive polyphenols. Waste Management & Research, 32 (12): 1235-1240. doi:10.1177/0734242X14555805

Durukan, H., Demirbaş, A. & Tutar, U. (2019). The Effects of Solid and Liquid Vermicompost Application on Yield and Nutrient Uptake of Tomato Plant. Turkish Journal of Agriculture - Food Science and Technology, 7 (7): 1069-1074. doi: 10.24925/turjaf.v7i7.1069-1074.2579

Eckhardt, D.P., Redin, M., Santana, N.A., De Conti, L., Dominguez, J., Jacques, R.J.S. & Antoniolli, Z.I. (2018). Cattle Manure Bioconversion Effect on the Availability of Nitrogen, Phosphorus, and Potassium in Soil. Revista Brasileira de Ciência do Solo, 42: e0170327. doi: 10.1590/18069657rbcs20170327

Edwards, C.A., Arancon, N.Q., Vasko-Bennett, M., Askar, A. & Keeney, G. (2010). Effect of aqueous extracts from vermicomposts on attacks by cucumber beetles (Acalymna vittatum) (Fabr.) on cucumbers and tobacco hornworm (Manducas exta) (L.) on tomatoes. Pedobiologia, 53 (2): 141-148. doi: 10.1016/j.pedobi.2009.08.002

EMPRESA BRASILERIA DE PESQUISA AGROPECUÁRIA - EMBRAPA. (2013). Sistema brasileiro de classificação dos solos. Brasília: EMBRAPA-SPI, Centro Nacional de Pesquisa de Solos. Brasília, DF: Embrapa Solos.

Ferreira, D.A. (2014). Sisvar: A Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38 (2): 109-112. doi: 10.1590/S1413-70542014000200001

Gopalakrishnan, S., Kiran, B.K., Humayun, P., Vidya, M.S., Deepthi, K., Jacob, S., Vadlamudi, S., Alekhya, G. & Rupela, O. (2011). Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from herbal vermicompost. African Journal of Biotechnology, 10 (79): 18142-18152. doi: 10.5897/AJB11.2710

Hemmatia, S. & Saeedizadeh, A. (2019). Root-knot nematode, Meloidogyne javanica, in response to soil fertilization. Brazilian Journal of Biology, 1-10. doi: 10.1590/1519-6984.218195

Hussey, R.S. & Barker, K.R.A. (1973). Comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter, 57: 1-12.

Inomoto, M.M. (2011). Avaliação da resistência de 12 híbridos de milho a Pratylenchus brachyurus. Tropical Plant Pathology, 36 (2): 308-312. doi: 10.1590/S1982-56762011000500006

Leite, M.L.T., Almeida, F.A. de, Fonseca, W.L., Oliveira, A.M. de, Prochnow, J.T., Pereira, F.F. & Neto, F. de A. (2019). Effect of Vinasse in the Suppressiveness to Pratylenchus brachyurus in Soybean. Journal of Agricultural Science, 11 (1): 538-545. doi: 10.5539/jas.v11n1p538

Mahanty, T., Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P. Das B, Ghosh, A. & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24: 3315-3335. doi: 10.1007/s11356-016-8104-0

Moura, G.S., Franzener, G. (2017). Biodiversidade de nematoides indicadores biológicos da qualidade do solo em agroecossistemas. Arquivos do Instituto Biológico, 84: e0142015. doi: 10.1590/1808-1657000142015.

Nigussie, A., Bruun, S., Neergaard, A. & Kuyper, T.W. (2017). Earthworms change the quantity and composition of dissolved organic carbon and reduce greenhouse gas emissions during composting. Waste Manage, 62: 43-51. doi: 10.1016/j.wasman.2017.02.009

Pereira, AS, Shitsuka, DM, Parreira, FJ & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 20 maio 2020.

Rao, M.S., Kamalnath, M., Umamaheswari, R., Rajinikanth, R., Prabu, P., Priti, K., Grace, G.N., Chaya, M.K. & Gopalakrishnan, C. (2017). Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Scientia Horticulturae, 218: 56-62. doi: 10.1016/j.scienta.2017.01.051

Ritzinger, C.H.S.P. & Fancelli, M. (2006). Integrated management of nematodes in the banana tree culture. Revista Brasileira de Fruticultura, 28 (2): 331-338.

Rostami, M., Olia, M. & Arabi, M. (2014). Evaluation of the effects of earthworm Eisenia fetida-based products on the pathogenicity of root-knot nematode (Meloidogyne javanica) infecting cucumber. International Journal of Recycling of Organic Waste in Agriculture, 3: 1-8. doi: 10.1007/s40093-014-0058-y

Santana, N.A., Rabuscke, C.M., Soares, V.B., Soriani, H.H., Nicoloso, F.T. & Jacques, R.J.S. (2018). Vermicompost dose and mycorrhization determine the efficiency of copper phytoremediation by Canavalia ensiformis. Environmental Science and Pollution Research, 25 (5): 12663-12677. doi: 10.1007/s11356-018-1533-1

Santana-Gomes, S.M., Dias-Arieira, C.R., Biela, F., Cardoso, M.R., Fontana, L.F. & Puerari, H.H. (2014). Crop succession in the control of Pratylenchus brachyurus in soybean. Nematropica, 44: 200-206.

Santos, B.H.C., Ribeiro, R.C.F., Xavier, A.A., Santos Neto, J.A. dos, Mota, V.J.G. (2013). Controle de Meloidogyne javanica em mudas de bananeira ‘prata-anã’ por compostos orgânicos. Revista Brasileira de Fruticultura, 35: 650-656.

Schiedeck, G., Holz, F.P., Zibetti, V.K. & Schiavon, G. de A. (2012). Potencial de aproveitamento de resíduos de agroindústrias através da minhocultura. Embrapa Clima Temperado, 180: 10-12.

Silva, F.J., Ribeiro, R.C.F., Xavier, A.A., Neto, J.A.S., Souza, M.A. & Dias-Arieira, C.R. (2016). Rhizobacteria associated with organic materials in the control of root-knot nematode in tomato. Horticultura Brasileira, 34: 59-65. doi: 10.1590/S0102-053620160000100009

Silva, R.V., Oliveira, R.D.L., Pereira, A.A., Sêni, D.J. (2007). Respostas de genótipos de Coffea spp. a diferentes populações de Meloidogyne exigua. Fitopatologia Brasileira, 32: 205-212. doi: 10.1590/S0100-41582007000300004

Xiao, Z., Liu, M., Jiang, L., Chen, X., Griffiths, B.S., Li, H. & Hu, F. (2016). Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Applied Soil Ecology, 105: 177-186. doi: 10.1016/j.apsoil.2016.04.003

Published

16/06/2020

How to Cite

SCHMITT, J.; PORTELA, V. O.; SANTANA, N. A.; BAPTISTELLA, M. H. B.; ECKHARDT, D. P.; STEFFEN, R. B.; ANTONIOLLI, Z. I. The use of organic fertilizers increases the growth of soybeans in soil infested by Pratylenchus brachyurus. Research, Society and Development, [S. l.], v. 9, n. 7, p. e929974876, 2020. DOI: 10.33448/rsd-v9i7.4876. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/4876. Acesso em: 25 nov. 2024.

Issue

Section

Agrarian and Biological Sciences