Physico-chemical characteristics and effect on oxidative stress of red pitaya in swiss diabetic mice
DOI:
https://doi.org/10.33448/rsd-v9i7.5035Keywords:
Cactaceae; Functional Food; Diabetes Mellitus; Oxidative Stress.Abstract
Red pitaya (Hylocereus polyrhizus Weber Britton & Rose) is rich in antioxidants, which might help regulate oxidative stress, exacerbated in Diabetes Mellitus (DM). This study aimed to determine the centesimal composition, physicochemical characteristics and in vivo antioxidant effect of red pitaya in diabetic swiss mice. Pulp, seeds and peel were isolated and used for physicochemical and centesimal composition analysis. DM was induced in female Swiss mice through intraperitoneal Alloxan Monohydrate injection. Groups with 6 animals were formed: Healthy (SAUD), Untreated A and B (DNT A and DNT B), Metformin (MET), and groups fed with 20 (PIT20), 40 (PIT40), 200 (PIT200) and 400 (PIT400) mg of pulp with seeds extract/kg of animals’ body weight, by gavage, for 28 days. Thiobarbituric acid reactive species (TBARS) hepatic content was quantified by Malondialdehyde (MDA), to evaluate lipid peroxidation. Pitaya’s composition was similar to that previously reported. Pulp and peel showed insignificant lipid contents, expressive presence of carbohydrates, and fibers in all samples, especially peel. Lowest MDA was observed in PIT400, PIT200, and PIT40, compared to DNT A and B, and MET. Results were dose-dependent, suggesting pitaya consumption was associated with lower lipid peroxidation. Further studies on its composition and applications as a functional food are required, especially for humans and in DM.
References
Abdulazeez, S. S., & Ponnusamy, P. (2016). Antioxidant and hypoglycemic activity of strawberry fruit extracts against alloxan induced diabetes in rats. Pakistan Journal of Pharmaceutical Sciences, 29(1), 255–260.
Abreu, W. C. de, Lopes, C. de O., Pinto, K. M., Oliveira, L. A., Carvalho, G. B. M. de, & Barcelo, M. de F. P. (2012). Características físico-químicas e atividade antioxidante total de pitaias vermelha e branca. Revista do Instituto Adolfo Lutz, 71(4), 656–661.
American Diabetes Association (2019). Introduction : Standards of Medical Care in Diabetes – 2020.Diabetes Care, 43(Supplement 1).
American Oil Chemists’ Society (2009). Official methods and recommended practices of the American Oil Chemists’ Society. Champaign: AOCS.
Ankom. (2009). Technology method 2: rapid determination of oil/at utilizing high temperature solvent extraction. Macedon: Ankom.
Ariffin, A. A., Bakar, J., Tan, C. P., Rahman, R. A., Karim, R., & Loi, C. C. (2009). Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chemistry, 114(2), 561–564. https://doi.org/10.1016/j.foodchem.2008.09.108
Association of Official Analytical Chemists International (1997). Official methods of analysis of the AOAC international. Gaitherburg: AOAC International.
Association of Official Analytical Chemists International (2005). Official methods of analysis of the AOAC international. Gaitherburg: AOAC International.
Association of Official Analytical Chemists International (2010). Official methods of analysis of the AOAC international. Gaitherburg: AOAC International.
Atanasov, A. G., Waltenberger, B., Pferschy-wenzig, E., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products : A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Celular Longevity, 2014(1–31).
Bakar, J. C. E., S., Kharidah, M., Dzulkifly, M. A., & Noranizan, A. (2011). Physico-chemical characteristics of red pitaya (Hylocereus polyrhizus) peel. International Food Research Journal, 18(1), 279–286.
Barbosa, K. B. F., Costa, N. M. B., Alfenas, R. de C. G., De Paula, S. O., Minim, C. P. R., & Bressan, J. (2010). Estresse oxidativo: conceito, implicações e fatores modulatórios. Revista de Nutrição, 23(4), 629–643.
Bernaud, F. S. R., & Rodrigues, T. C. (2013). Fibra alimentar: ingestão adequada e efeitos sobre a saúde do metabolismo. Arquivos Brasileiros de Endocrinologia & Metabologia, 57(6), 397–405. https://doi.org/10.1590/s0004-27302013000600001
Chen, C., You, L. J., Abbasi, A. M., Fu, X., Liu, R. H., & Li, C. (2016). Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro. Food and Function, 7(1), 530–539. https://doi.org/10.1039/c5fo01114k
Cordeiro, M. H. M., Da Silva, J. M., Mizobutsi, G. P., Mizobutsi, E. H., & Da Mota, W. F. (2015). Caracterização física, química e nutricional da pitaia-rosa de polpa vermelha. Revista Brasileira de Fruticultura, 37(1), 20–26. https://doi.org/10.1590/0100-2945-046/14
da Cruz, L. S., Lima, R. Z., de Abreu, C. M. P., Corrêa, A. D., & Pinto, L. de M. A. (2013). Caracterização física e química das frações do fruto atemoia Gefner. Ciencia Rural, 43(12), 2280–2284. https://doi.org/10.1590/S0103-84782013005000133
Dahl, W. J., & Stewart, M. L. (2015). Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. Journal of the Academy of Nutrition and Dietetics, 115(11), 1861–1870. https://doi.org/10.1016/j.jand.2015.09.003
De Menezes, T. P., Ramos, J. D., Lima, L. C. D. O., Costa, A. C., Resende, R. de C. M. N., & Rufini, J. C. M. (2015). Características físicas e físico-químicas de pitaia vermelha durante a maturação. Semina: Ciencias Agrarias, 36(2), 631–644. https://doi.org/10.5433/1679-0359.2015v36n2p631
Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316–328. https://doi.org/10.1016/j.numecd.2005.05.003
Dembitsky, V. M., Poovarodom, S., Leontowicz, H., Leontowicz, M., Vearasilp, S., Trakhtenberg, S., & Gorinstein, S. (2011). The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Research International, 44(7), 1671–1701. https://doi.org/10.1016/j.foodres.2011.03.003
Den Ende, W. V., Peshev, D., & De Gara, L. (2011). Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Science and Technology, 22(12), 689–697. https://doi.org/10.1016/j.tifs.2011.07.005
Donadio, L. C. (2009). Pitaya. Revista Brasileira de Fruticultura, 31(3), 637–929.
Fathordoobady, F., Mirhosseini, H., Selamat, J., & Manap, M. Y. A. (2016). Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction. Food Chemistry, 202, 70–80. https://doi.org/10.1016/j.foodchem.2016.01.121
França, B. K., Alves, M. R. M., Souto, F. M. S., Tiziane, L., Boaventura, R. F., Guimarães, A., & Alves Jr, A. (2013). Peroxidação lipídica e obesidade : Métodos para aferição do estresse oxidativo em obesos. Jornal Português de Gastroenterologia, 20(5), 199–206. https://doi.org/10.1016/j.jpg.2013.04.002
Gao, J., Han, Y. L., Jin, Z. Y., Xu, X. M., Zha, X. Q., Chen, H. Q., & Yin, Y. Y. (2015). Protective effect of polysaccharides from Opuntia dillenii Haw. fruits on streptozotocin-induced diabetic rats. Carbohydrate Polymers, 124, 25–34. https://doi.org/10.1016/j.carbpol.2015.01.068
García-Cruz, L., Dueñas, M., Santos-Buelgas, C., Valle-Guadarrama, S., & Salinas-Moreno, Y. (2017). Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. Pruinosus and S. stellatus). Food Chemistry, 234, 111–118. https://doi.org/10.1016/j.foodchem.2017.04.174
Gaschler, M. M., & Stockwell, B. R. (2017). Biochemical and Biophysical Research Communications Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 482(3), 419–425. https://doi.org/10.1016/j.bbrc.2016.10.086
Gengatharan, A., Dykes, G. A., & Choo, W. S. (2015). Betalains: Natural plant pigments with potential application in functional foods. LWT - Food Science and Technology, 64(2), 645–649. https://doi.org/10.1016/j.lwt.2015.06.052
Giacco, F., & Brownlee, M. (2010). Oxidative Stress and Diabetic Complications IR RAGE SOD. Circulation Research, 107, 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
Grajek, W., Olejnik, A., & Sip, A. (2005). Probiotics, prebiotics and antioxidants as functional foods. Acta Biochimica Polonica, 52(3), 665–671.
Hartman, L., & Lago, R. C. A. (1973). Rapid preparation of fatty acid methyl ester from lipids. Laboratory Practice, 22, 475–476.
Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756
Hua, Q., Chen, C., Tel Zur, N., Wang, H., Wu, J., Chen, J., Zhang, Z., Zhao, J., Hu, G., & Qin, Y. (2018). Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiology and Biochemistry, 126, 117–125. https://doi.org/10.1016/j.plaphy.2018.02.027
Ibrahim, S. R. M., Mohamed, G. A., Khedr, A. I. M., Zayed, M. F., & El-Kholy, A. A. E. S. (2018). Genus Hylocereus: Beneficial phytochemicals, nutritional importance, and biological relevance—A review. Journal of Food Biochemistry, 42(2), 1–29. https://doi.org/10.1111/jfbc.12491
Instituto Adolfo Lutz(2008) Métodos físico-químicos para análise de alimentos. São Paulo: Instituto Adolfo Lutz.
Jamshidi-kia, F., Lorigooini, Z., & Amini-khoei, H. (2018). Medicinal plants : Past history and future perspective. Journal of Herbmed Pharmacology, 7(1), 1–7. https://doi.org/10.15171/jhp.2018.01
Jones, J. M. (2014). CODEX-aligned dietary fiber definitions help to bridge the “fiber gap”. Nutrition Journal, 13(1), 1–10. https://doi.org/10.1186/1475-2891-13-34
Khalili, R. M. A., Abdullah, A. B. C., & Manaf, A. A. (2014). Isolation and characterization of oligosaccharides composition in organically grown red pitaya, white pitaya and papaya. International Journal of Pharmacy and Pharmaceutical Sciences, 6(2), 131–136.
Kayama, Y., Raaz, U., Jagger, A., Adam, M., & Schellinger, I. N. (2015). Diabetic Cardiovascular Disease Induced by Oxidative Stress. 25234–25263. https://doi.org/10.3390/ijms161025234
Kotadiya, C., Patel, U. D., Modi, C. M., Patel, H. B., & Kalaria, V. A. (2017). Effect of Opuntia elatior fruit juice and quercetin administration on glucose level , lipid profile , hyperalgesic response and spontaneous motor activity in diabetic rats. The Pharma Innovation Journal, 6(8), 150–155.
Le Bellec, F., Vaillant, F., & Imbert, E. (2006). Pitaya (Hylocereus spp.): A new fruit crop, a market with a future. Fruits, 61(4), 237–250. https://doi.org/10.1051/fruits
Li, X., Li, M., Han, C., Jin, P., & Zheng, Y. (2017). Increased temperature elicits higher phenolic accumulation in fresh-cut pitaya fruit. Postharvest Biology and Technology, 129, 90–96. https://doi.org/10.1016/j.postharvbio.2017.03.014
Lim, H. K., Tan, C. P., Karim, R., Ariffin, A. A., & Bakar, J. (2010). Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chemistry, 119, 1326–1331. https://doi.org/10.1016/j.foodchem.2009.09.002
Lima, E. S., & Abdalla, D. S. P. (2001). Peroxidação lipídica : mecanismos e avaliação em amostras biológicas. Revista Brasileira de Ciências Farmacêuticas, 37(3), 293–303.
Lira, S. M., Dionísio, A. P., Holanda, M. O., Marques, C. G., Silva, G. S. da, Correa, L. C., Santos, G. B. M., de Abreu, F. A. P., Magalhães, F. E. A., Rebouças, E. de L., Guedes, J. A. C., Oliveira, D. F. de, Guedes, M. I. F., & Zocolo, G. J. (2020). Metabolic profile of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) by UPLC-QTOF-MSE and assessment of its toxicity and anxiolytic-like effect in adult zebrafish. Food Research International, 127, 108701. https://doi.org/10.1016/j.foodres.2019.108701
Lushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224, 164–175. https://doi.org/10.1016/j.cbi.2014.10.016
Lyra, R., Oliveira, M., Lins, D., Cavalcanti, N., Gross, J. L., Maia, F. F. R., Araújo, L. R., Yafi, M., Guimarães, F. P. D. M., Takayanagui, A. M. M., Lucena, J. B. D. S., Golbert, A., Campos, M. A. a., Saúde, M. da, Sartorelli, D. S., Franco, L. J., Prevenção, E., & Marcondes, J. a. M. (2020). Sociedade Brasileira de Diabetes. In Diabetes Mellitus Tipo 1 e Tipo2 (Vol. 5, Número 3).
Maigoda, T. C., Sulaeman, A., Setiawan, B., & Wibawan, W. T. (2016). Effects of Red Dragon Fruits (Hylocereus polyrhizus) Powder and Swimming Exercise on Inflammation, Oxidative Stress Markers, and Physical Fitness in Male Obesity Rats (Sprague dawley). International Journal of Sciences: Basic and Applied Research, 25(1), 123–141.
Martin, C. A., Almeida, V. V. de, Ruiz, M. R., Visentainer, J. E. L., Matshushita, M., Souza, N. E. de, & Visentainer, J. V. (2006). Omega-3 and omega-6 polyunsaturated fatty acids: importance and occurrence in foods 1. Rev. Nutr, 19(6), 761–770.
Matsuda, M., & Shimomura, I. (2013). Increased oxidative stress in obesity : Implications for metabolic syndrome , diabetes , hypertension , dyslipidemia , atherosclerosis , and cancer. Obesity Research & Clinical Practice, 7(5), e330–e341. https://doi.org/10.1016/j.orcp.2013.05.004
Monteiro, C. S., Balbi, M. E., Miguel, O. G., Maria, S., & Haracemiv, C. (2008). Qualidade nutricional eantioxidante do tomate “tipo italiano”. Alimentos e Nutrição, 19(1), 25–31.
Niki, E. (2014). Biomarkers of lipid peroxidation in clinical material. BBA - General Subjects, 1840(2), 809–817. https://doi.org/10.1016/j.bbagen.2013.03.020
Nunes, E. N., Sandro, A., Sousa, B. De, Lucena, C. M. De, Silva, S. D. M., Farias, R., Lucena, P. De, Antônio, C., Alves, B., & Alves, E. (2014). Pitaia (Hylocereus sp.): Uma revisão para o Brasil. Gaia Scientia, 8, 90–98.
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
Omidizadeh, A., Yusof, R. M., Ismail, A., Roohinejad, S., Nateghi, L., & Bakar, M. Z. A. (2011). Cardioprotective compounds of red pitaya (Hylocereus polyrhizus) fruit. Journal of Food, Agriculture and Environment, 9(3–4), 152–156.
Omidizadeh, A., Yusof, R. M., Roohinejad, S., Ismail, A., Abu Bakar, M. Z., & El-Din A. Bekhit, A. (2014). Anti-diabetic activity of red pitaya (Hylocereus polyrhizus) fruit. RSC Advances, 4(108), 62978–62986. https://doi.org/10.1039/C4RA10789F
Ortiz-Hernández, Y. D., & Carrillo-Salazar, J. A. (2012). Pitahaya (Hylocereus spp.): A short review. Comunicata Scientiae, 3(4), 220–237.
Ötles, S., & Ozgoz, S. (2014). Health effects of dietary fiber. Acta Scientiarum Polonorum, Technologia Alimentaria, 13(2), 191–202. https://doi.org/10.17306/J.AFS.2014.2.8
Pitocco, D., Tesauro, M., Alessandro, R., & Ghirlanda, G. (2013). Oxidative Stress in Diabetes : Implications for Vascular and Other Complications. International journal of Molecular Sciences, 14, 21525–21550. https://doi.org/10.3390/ijms141121525
Poolsup, N., Suksomboon, N., & Paw, N. J. (2017). Effect of dragon fruit on glycemic control in prediabetes and type 2 diabetes: A systematic review and meta-analysis. PLoS ONE, 12(9), 1–12. https://doi.org/10.1371/journal.pone.0184577
Quirós-Sauceda, A. E., Palafox-Carlos, H., Sáyago-Ayerdi, S. G., Ayala-Zavala, J. F., Bello-Perez, L. A., Álvarez-Parrilla, E., De La Rosa, L. A., González-Córdova, A. F., & González-Aguilar, G. A. (2014). Dietary fiber and phenolic compounds as functional ingredients: Interaction and possible effect after ingestion. Food and Function, 5(6), 1063–1072. https://doi.org/10.1039/c4fo00073k
Rates, S. M. K. (2001). Plants as source of drugs. Toxicon, 39, 603–613.
Resolução RDC no 360, de 23 de dezembro de 2003, Agência Nacional de Vigilância Sanitária (ANVISA) 1 (2003).
Ruths, R., da Silva Bonome, L. T., Tomazi, Y., Siqueira, D. J., Moura, G. S., & Lima, C. S. M. (2019). Influence of temperature and luminosity in seed germination of species: Selenicereus setaceus, Hylocereus undatus and Hylocereus polyrhizus. Revista de Ciencias Agroveterinarias, 18(2), 194–201. https://doi.org/10.5965/223811711812019194
Sies, H, & Stahl, W. (1995). Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. The American Journal of Clinical Nutrition, 62(6), 1315S-1321S.
Sies, Helmut. (2018). On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology, 7, 122–126. https://doi.org/10.1016/j.cotox.2018.01.002
Silva, A. de C. C. da, Martins, A. B. G., & Cavallari, L. de L. (2012). Qualidade de frutos de pitaya em função da época de polinização, da fonte de pólen e da coloração da cobertura. Revista Brasileira de Fruticultura, 33(4), 1162–1168. https://doi.org/10.1590/s0100-29452011000400014
Song, H., Zheng, Z., Wu, J., Lai, J., Chu, Q., & Zheng, X. (2016). White pitaya (Hylocereus undatus) juice attenuates insulin resistance and hepatic steatosis in diet-induced obese mice. PLoS ONE, 11(2), 1–14. https://doi.org/10.1371/journal.pone.0149670
Tenore, G. C., Novellino, E., & Basile, A. (2012). Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. Journal of Functional Foods, 4, 129–136. https://doi.org/10.1016/j.jff.2011.09.003
Ullah, A., Khan, A., & Khan, I. (2016). Diabetes mellitus and oxidative stress –– A concise review. Saudi Pharmaceutical Journal, 24(5), 547–553. https://doi.org/10.1016/j.jsps.2015.03.013
Vareda, P. M. P. (2013). Avaliação da atividade hipoglicemiante do extrato de Myrcia bella em camundongos diabéticos por estreptozotocina. Universidade Estadual Paulista, Botucatu.
Wichienchot, S., Jatupornpipat, M., & Rastall, R. A. (2010). Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, 120(3), 850–857. https://doi.org/10.1016/j.foodchem.2009.11.026
Wu, L. C., Hsu, H. W., Chen, Y. C., Chiu, C. C., Lin, Y. I., & Ho, J. A. A. (2006). Antioxidant and antiproliferative activities of red pitaya. Food Chemistry, 95(2), 319–327. https://doi.org/10.1016/j.foodchem.2005.01.002
Zanchet, A. (2017). Utilização de Farinha de casca de Pitaia Vermelha (Hylocereu undatus) na substituição parcial de gordura em biscoito tipo cookie Universidade Federal do Rio Grande do Sul, Porto Alegre.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.