Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5477

Keywords:

Logistic regression; Bayesian inference; Perinatal death.

Abstract

Generalized linear models are useful, among other situations, when you want to fit models to data that do not follow normality and cannot be adjusted using only simple linear regression. Another powerful estimation tool is the Bayesian methods, based on conditional probabilities. This work presents an adjustment of logistic regression models with parameters estimated by the maximum likelihood method, which is updated using Bayesian inference techniques. Such methods were applied to data obtained at the Instituto de Saúde Elpídio de Almeida, which is located in the city of Campina Grande - PB. The information refers to pregnant patients seen at this health unit. The objective was to obtain the best possible model that provides us with information about the chance of death of a child due to maternal variables using the maximum likelihood estimation method and the Bayesian method. The adjustments and diagnostics of the models were performed with the aid of the R software. It was found that the model estimated by the maximum likelihood is very close to the Bayesian model.

References

Bolfarine, H., & Sandoval, M. C. (2001). Introdução à inferência estatística. Rio de Janeiro, 2.

Mardia, K. V., & Marshall, R. J. (1984). Maximum likelihood estimation of models for Residual covariance in spatial regression. Biometrika, Oxford University Press, 71(1),135–146.

Ministério da Saúde (2016). Entendendo o SUS. Brasília. Disponível em: <http://portalsaude.saude.gov.br/index.php/cidadao/entenda-o-sus>.

Moral, R. A., Hinde, J., & Demetrio, C. G. (2017). Half-normal plotsandoverdispersedmodels in r: The hnppackage. JournalofStatistical Software, 81 (10), 1–23.

Nelder, J. A., & Baker, R. J. (1972). Generalized linear models. New York: Wiley Online Library.

Paraíba, J. da. Mais de 5 mil partos feitos no Isea-CG são de outras cidades e caso vai ao MFP. Campina Grande: Reportagem, 2018.

Sarinho S. W., Silva G. A. P., Melo F. D. A., & Guimarães M. J. B.( 1998). Causas de óbitos neonatais na Cidade do Recife segundo critério de evitabilidade. An Fac Med Univ Fed Pernambuco; 12 (43),112-5.

Silva C. F., Leite A. J. M., Almeida N. M. G. S., & Gondim R. C. (2006). Fatores de risco para mortalidade infantil em município do nordeste do brasil: linkage entre bancos de dados de nascidos vivos e óbitos infantis-2000 a 2002. Revista Brasileira de Epidemiologia; 9 (1), 69–80.

Victora, C. G., Aquino, E. M. M. L. L. de, Leal, M. do C., Monteiro, C. A., Barros, F. C. L. F. de, & Szwarcwald, C. L. (2011). Saúde de mães e crianças no Brasil: progressos e desafios. The Lancet, 32-46. doi:10.1016/S0140-6736(11)60138-4

Published

18/07/2020

How to Cite

ALBUQUERQUE, M. A. de; LUCENA, S. L. L. de; BARROS, K. N. N. de O. Comparison of classic and Bayesian model for data on perinatal deaths at ISEA, Campina Grande-PB. Research, Society and Development, [S. l.], v. 9, n. 8, p. e464985477, 2020. DOI: 10.33448/rsd-v9i8.5477. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5477. Acesso em: 7 jan. 2025.

Issue

Section

Health Sciences