Growth and nutrition of table beet under levels of sodium and potassium
DOI:
https://doi.org/10.33448/rsd-v9i8.5500Keywords:
Beta vulgaris L; Mineral nutrition; Nutrient; Beneficial element.Abstract
Sodium (Na) is considered a beneficial element for plants in general and, for table beet some other crops, it can partially replace potassium (K) in some functions in the plant. However, little is known in respect to the influence of this cation on table beet. In this context, the present study aimed to verify the response of nutrition with Na in substitution and in addition to nutrition with K on the growth and nutrition of the table beet. The experiment, conducted in vases with nutrient solution in a completely randomized design, was made up of three replications and seven treatments: T1 (100% K e 0 % Na), T2 (75% K e 25% Na) , T3 (50% K e 50% Na), T4 (25 % K e 75% Na), T5 (0% K e 100 % Na), T6 (100% K e 25 % Na) e T7 (100 K e 50 % Na). The results showed that the substitution of the potassium by the sodium in 25% of the recommended base and addition of Na (25 and 50%) to the nutrient solution with 100% K did not interfere significantly in the growth of the plants. The sodium uptake by the table beet was lower in comparison with that of potassium. Besides, the presence of Na affected the levels of other nutrients. Thus, it was concluded that table beet produces satisfactorily under regular applications of K with the addition of Na, as well as when partially replacing the potassium at the level of 25% of Na provided in the culture solution.
References
Adams, S. N. (1961). The effect of sodium and potassium fertilizer on the mineral composition of sugar beet. The Journal of Agricultural Science, 56(3), 383-388. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1017/S0021859600049844
Alves, A. U., Prado, R. de M., Gondim, A. R. de O., Fonseca, I. M. & Cecílio Filho, A. B. (2008). Desenvolvimento e estado nutricional da beterraba em função da omissão de nutrientes. Horticultura Brasileira, 26(2), 292-295. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1590/S0102-05362008000200033
Barlóg, P., Szczepaniak, W., Grzebisz, W. & Pogłodziński, R. (2018). Sugar beet response to different K, Na and Mg ratios in applied fertilizers. Plant, Soil and Environment, 64(4), 173-179. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.17221/809/2017-PSE
Carmona, F. D. C., Anghinoni, I., Meurer, E. J., Holzschuh, M. J., & Fraga, T. I. (2009). Estabelecimento do arroz irrigado e absorção de cátions em função do manejo da adubação potássica e do nível de salinidade no solo. Revista Brasileira de Ciência do Solo, 33(2), 371-383. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1590/S0100-06832009000200015
Correa, C. V., Cardoso, A. I. I., DE Souza, L. G., Antunes, W. L. P., & Magolbo, L. A. (2014). Produção de beterraba em função do espaçamento. Horticultura Brasileira, 32(01). Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1590/hb.v32i01.27
El-Sheikh, A. M., Ulrich, A., & Broyer, T. C. (1967). Sodium and rubidium as possible nutrients for sugar beet plants. Plant physiology, 42(9), 1202-1208. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1104/pp.42.9.1202
Figdore, S. S., Gabelman, W. H., & Gerloff, G. C. (1987). The accumulation and distribution of sodium in tomato strains differing in potassium efficiency when grown under low-K stress. In Genetic Aspects of Plant Mineral Nutrition (pp. 353-360). Springer, Dordrecht. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1007/BF02370156
Francois, L. E. (1987). Salinity effects on asparagus yield and vegetative growth. Journal of the American Society for Horticultural Science (USA). 112 (3), 432-436.
Grangeiro, L. C., Negreiros, M. Z. D., Souza, B. S. D., Azevêdo, P. E. D., Oliveira, S. L. D., & Medeiros, M. A. D. (2007). Acúmulo e exportação de nutrientes em beterraba. Ciência e Agrotecnologia, 31(2), 267-273. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1590/S1413-70542007000200001
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit). Acesso em 02 de junho de 2020, em http://hdl.handle.net/2027/uc2.ark:/13960/t51g1sb8j
Kudo, N., Sugino, T., Oka, M., & Fujiyama, H. (2010). Sodium tolerance of plants in relation to ionic balance and the absorption ability of microelements. Soil Science & Plant Nutrition, 56(2), 225-233. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1111/j.1747-0765.2009.00436.x
Larson, W. E., & Pierre, W. H. (1953). Interaction of sodium and potassium on yield and cation composition of selected crops. Soil Science, 76(1), 51-64. Acesso em 02 de junho de 2020, em https://journals.lww.com/soilsci/Citation/1953/07000/Interaction_of_Sodium _and_Potassium_on_Yield_and.6.aspx
Malavolta, E. (2006). Manual de nutrição mineral de plantas. São Paulo: Agronômica Ceres. 638 p.
Plettl, D. C., & Moller, I. S. (2010). Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell & Environment, 33(4), 612-626. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1111/j.1365-3040.2009.02086.x
R Development Core Team. (2020). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Acesso em 02 de junho de 2020, em https://cran.r-project.org/
Rodríguez-Navarro, A., & Rubio, F. (2006). High-affinity potassium and sodium transport systems in plants. Journal of experimental botany, 57(5), 1149-1160. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1093/jxb/erj068
Sharma, S., Sharma, A., & Singh, D. (2018). Effect of sodium selenate on photosynthetic efficiency, antioxidative defence system and micronutrients in maize (Zea mays). Biologia, 73(2), 137-144. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.2478/s11756-018-0017-6
Silva, F. C. (2009). Manual de análises químicas de solos, plantas e fertilizantes. Brasília: EMBRAPA Informação Tecnológica. 627p.
Tedesco, M. J. Gianello, C.; Bissani, C. A.; Bohen, H. & Volkeweiss, S. (1995). Análise de solo, plantas e outros materiais. 2.ed. Porto Alegre: UFRGS. 147p. (Boletim técnico, 5)
Wakeel, A., Steffens, D., & Schubert, S. (2010). Potassium substitution by sodium in sugar beet (Beta vulgaris) nutrition on K‐fixing soils. Journal of Plant Nutrition and Soil Science, 173(1), 127-134. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1002/jpln.200900270
Wakeel, A., Farooq, M., Qadir, M., & Schubert, S. (2011). Potassium substitution by sodium in plants. Critical reviews in plant sciences, 30(4), 401-413. Acesso em 02 de junho de 2020, em DOI https://doi.org/10.1080/07352689.2011.587728
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Alisson Lucrécio da Costa; Karina Fernandes Carvalho; Nilma Portela Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.