Use of agro-industrial waste for cellulase production: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5785

Keywords:

Agricultural biotechnology; Agribusiness; Biorefineries; Lignocellulose; Enzymes; Microorganisms.

Abstract

New technologies are under study with a view to the use of agro industrial wastes in the development of bioprocesses, for example for the production of biofuels, energy, plastics and inputs in the food and beverage industries. The aim of this study was to realize the state of the art on the use of agro-industrial residues for the production of cellulase. The methodology adopted was exploratory and descriptive research, using scientific publications from the last decade. It was found that a market of importance for bioprocesses are commercial enzymes produced by microorganisms that use agro-industrial residues as nutrients, which have proved to be a viable option when compared to their chemical counterparts. Cellulase is the third most used enzyme in several processes, behind proteases and amylases, whose demand is increasing in industrial applications, such as in detergents, textiles, paper processing, animal feed, fruit juice, food, drinks and biofuels. Cellulases are inducible enzymes synthesized by a wide variety of microorganisms. The composition of the microorganism growth medium can significantly affect the cellulase yield and productivity and is important in the development of industrial bioprocesses. The use of agro-industrial waste is an interesting strategy for reducing the costs associated with the culture medium composition, as an economical and ecologically viable alternative for the destination of these resources and the production of enzymes on a large scale.

References

ABIB – Associação Brasileira das Indústrias de Biomassa e Energia Renovável. Atlas Brasileiro Biomassa e Energia. (2016). Curitiba, Paraná. Retrieved Jan 27, 2020, from https://es.calameo.com/read/0008953904f21ebb5e908

Aita, B., Spannemberg, S., Schmaltz, S., Zabot, G., Tres, M., Kuhn, R., Mazutti, M. (2019). Production of cell-wall degrading enzymes by solid-state fermentation using agroindustrial residues as substrates. Journal of Environmental Chemical Engineering, 7(3). doi.org/10.1016/j.jece.2019.103193

Anwar, Z., Gulfraz, M., Irshad, M. (2015). Agro-industrial lignocellulosic biomass a key to unlock the future of bio-energy: a brief review. Journal of radiation research and applied sciences, 7(2), 163 – 173. doi 10.1016/j.jrras.2014.02.003

Azadian, F., Badoei-Dalfard, A., Namaki-Shoushtari, A., Karami, Z., Hassanshahian, M. (2017). Production and characterization of an acido-thermophilic, organic solvent stable celulase from Bacillus sonorensis HSC7 by convertion of lignocellulosic wastes. Journal of genetic engineering and biotechnology, 15, 187 – 196. doi: doi.org/10.1016/j.jgeb.2016.12.005

Bajaj, P., & Mahajan, R. (2019) Cellulase and xylanase synergism in industrial biotechnology. Applied Microbiology and Biotechnology, 103, 8711 – 8724. doi: 10.1007/s00253-019-10146-0

Bajpai, p. (2016). Pretreatment of lignocellulosic biomass for biofuel production. Green Chemistry for Sustainability. Springerbriefs in molecular science, 7-12. doi: 10.1007/978-981-10-0687-6_2

Behera, B., Sethi B., Mishra, R., Dutta, S., Thatoi, H. (2017) Microbial cellulases – Diversity and biotechnology with reference to mangrove environment: a review. Journal of Genetic Engineering and Biotechnology, 15(1), 197 – 210. doi: 10.1016/j.jgeb.2016.12.001

Bevilaqua, D. 2010. Produção de ácido levulínico por meio de hidrólise ácida da casca de arroz. Santa maria, 2010. 87 f. Dissertação (mestrado em química) – centro de ciências naturais e exatas, Universidade Federal de Santa Maria, Santa Maria, RS

Bhat, M. & Bhat, S. (1997) Cellulose degrading enzimes and their potencial industrial applications. Biotechnology advances, 15(3-4), 583-620. doi: 10.1016/s0734-9750(97)00006-2

Biswas, R., Persad, A., Bisaria, V. (2014). Production of cellulolytic enzymes. Bioprocessing of renewable resources to commodity bioproducts, 105-132. doi: 10.1002/9781118845394.ch5

Boechat, A. (2010). Produção de celulases pelo microrganismo termofílico Bacillus sp SMIA-E. Dissertação (Mestrado em Produção Vegetal) Centro de Ciências e Tecnologias Agropecuárias da Universidade Estadual do Norte Fluminense Darcy Ribeiro. Campos dos Goytacazes-RJ.72 p.

Brijwani, K., & Vadlani, P. (2011). Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzime research, 2011, 10. doi: doi.org/10.4061/2011/860134

Castro, A., & Pereira, N. (2010). Produção, propriedade e aplicação de celulases na hidrólise de resíduos agroindustriais. Quimica nova, 33(1), 181-188. doi: doi.org/10.1590/S0100-40422010000100031

Cecchini, C. (2017). Bioplastics made from upcycled food waste. Prospects for their use in the field of design. The design journal, 20, 1596 – 1610. doi: doi.org/10.1080/14606925.2017.1352684

Fernando, S., Adhikari, S., Chandrapal, C., & Murali, N. (2006). Biorefineries: current status, challenges, and future direction. Energy & Fuels, 20(4), 1727-1737. doi: doi.org/10.1021/ef060097w

Gaur, R., & Tiwari, S. (2015). Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from B. vallismortis RG07. BMC Biotechnology, 15, 19(2015), 1 – 12. doi: doi.org/10.1186/s12896-015-0129-9

Geissdoerfer, M., Savaget, P., Bocken, N., Hultink, E. (2017). The circular economy – a new sustainability paradigm? Journal of cleaner production, 143, 757 – 768. doi: 10.1016/j.jclepro.2016.12.048

Gopalan, N., & Nampoothiri, K. (2016). Biotechnological production of enzymes using agro-industrial wastes: economic considerations, commercialization potential and future prospects. Agro-industrial wastes as feedstock for enzymes production. Chapter 14, 313 – 330.

Harshvardhan, K., Mishra, A., & Jha, B. (2013). Purification and caractherization of cellulase from a marine Bacillus sp. H1666: a potencial agent for single step saccharification of seaweed biomass. Journal of Molecular Catalysis B: Enzymatic, 93, 51 – 56. doi: doi.org/10.1016/j.molcatb.2013.04.009

Hawas, J. M., Banna, T., Belal, E., Azir, A. (2016). Production of bioplastic from some selected bacterial strains. International Journal of Current Microbiology and Applied Sciences. 5 (1), 10 – 22. Retrieved from https://www.ijcmas.com/

Isikgor, F. & Becer, R. (2016). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6 (25), 4497 – 4559. doi: doi.org/10.1039/C5PY00263J

Jayasekara, S., & Ratnayake, R. (2019). Microbial cellulases: an overview and applications. Cellulose, 22. doi: 10.5772/intechopen.84531

Kamm, B., Gruber, P., & Kamm, M. (2010). Biorefineries – industrial processes and products: status quo and future directions, 949 p. Retrieved from https://www.wiley.com/en-py/Biorefineries+Industrial+Processes+and+Products:+Status+Quo+and+Future+Directions-p-9783527329533

Kapoor, M., Panwar, D., Kaira, G. (2016). Bioprocesses for enzyme production using agro-wastes: technical challenges and commercialization potencial. Agroindustrial wastes as feedstock for enzymes production. Chapter 3, 61 – 93.

Kasana, R., & Gulati, A. (2011). Cellulases from psychrophilic microorganisms: a review. Journal of Basic Microbiology, 51 (6), 572 – 579. doi: doi.org/10.1002/jobm.201000385

Kazeem, M., Shah, U., Baharuddi, A., Rahman, N. (2017). Prospecting agro-waste cocktail: supplementation for cellulase production by a newly isolated thermophilic B. liccheniformis 2D55. Applied Biochemistry and Biotechnology, 182, 1318 – 1340. doi: 10.1007/s12010-017-2401-z

Ladeira, S., Cruz, E., DelaTorre, A., Barbosa, J., Martins, M. (2015). Cellulase production by thermophilic Bacillus sp. SMIA-2 and its detergent compatibility. Electronic Journal of Biotechnology, 18 (2), 110 – 115. doi: doi.org/10.1016/j.ejbt.2014.12.008

Leistritz, L., Hodur, N., Senechal, D., Stowers, M.; McCalla, D., Saffron, C. (2007). Biorefineries using agricultural residue feedstock in the great plains, North Dakota State University, Department of Agribusiness and Applied Economics, Statistical Series Report. Retrieved from https://www.researchgate.net/publication/23514732_Biorefineries_Using_ Agricultural_Residue_Feedstock_In_The_Great_Plains

Lino, A. G. (2015) Composição química e estrutural da lignina e lípidos do bagaço e palha da cana de açúcar. Tesse (doutorado em agroquímica). Universidade Federal de Vicoça, MG.

Liu, X., & Kokare, C. (2017). Microbial enzymes of use in industry. Biotechnology of microbial enzymes: Production, biocatalysis and industrial applications, 267 – 298. doi: 10.1016/B978-0-12-803725-6.00011-X

Lynd, L., Weimer, P., Zyl, W., & Pretorius, I. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, (3), 505 – 577. doi: 10.1128/MMBR.66.3.506-577.2002

Marco, E., Heck, K., Martos, E., Van der Sand, S. (2017). Purification and characterization of a termostables alkaline celulase produced by B. licheniformis 308 isolated from compost. Anais da academia brasileira de ciencias, 89 (3), 2359 – 2370. doi.org/10.1590/0001-3765201720170408.

Meng, F., Ma, L., Ji, S., Yang, W., Cao, B. (2014). Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulose producing bacterium on untreated plant biomass. 2014. Letters in applied microbiology, 59 (3), 306-312. doi: 10.1111/lam.12276

Merino, S. & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. Advances in Biochemical Engineering/Biotechnology, 108, 95–120. doi.org/10.1007/10_2007_066

Monteiro, V., & Silva, R. (2009) Aplicações industriais da biotecnologia enzimática. Revista processos químicos, 3 (5), 10 – 23. doi: 10.19142/rpq.v3i5.83

Mrudula, S. & Murugammal, R. (2011). Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Brazilian journal of microbiology, 42 (3), 1119-1127. doi: 10.1590/S1517-838220110003000033

Nascimento, W. & Franco, C. (2015). Avaliação do potencial dos resíduos produzidos através do processamento agroindustrial no brasil. Revista virtual de química, 7 (6), 1968 – 1987. doi: 10.5935/1984-6835.20150116

Patel, A., Singhania, R., Sim, S., Pandey, A. (2019). Thermostable cellulases: current status and perspectives. Bioresourse technology, 279, 385 – 392. doi: 10.1016/j.biortech.2019.01.049

Pedroso, L., Silva, F., Melo, A., Junior, M., Shimoya, A. (2018). Demandas atuais e futuras da biomassa e da energia renovável no brasil e no mundo. Brazilian Journal of Development, 4, (5), 1980 – 1996. Retrieved from: https://www.brazilianjournals.com/index.php/ BRJD/article/view/231/192

Penha, E., Viana, L., Gottsehalk, L., Terzi, S., Souza, E., Cordeiro, S., Santos, J., Salum, T. (2016). Aproveitamento de resíduos da agroindústria do óleo de dendê para a produção de lipase por Aspergillus niger. Ciência rural, 46 (4), 755-761. http://dx.doi.org/10.1590/0103-8478cr20131673

Premalatha, N., Gopal, N. O., Jose, P. A., Anandham, R., Kwon, S. (2015). Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Frontiers in Microbiology, 6 (10). doi: 10.3389/fmicb.2015.01046

Prodanov, C. C. & Freitas, E. C. (2013). Metodologia do trabalho científico: métodos e técnicas da pesquisa e do trabalho acadêmico. Novo Hamburgo-RS: Feevale. 2da edição. Retrieved from: http://www.feevale.br/Comum/midias/8807f05a-14d0-4d5b-b1ad-1538f3aef538/E-book%20Metodologia%20do%20Trabalho%20Cientifico.pdf

Ramírez, F., Tamayo, D., Corona, I., Cervantes, J., Claudio, J., Rodríguez, E. (2019). Agro-industrial waste revalorization: the growing biorefinery. Biomass for bioenergy – recent trends and future challenge. doi: 10.5772/intechopen.83569

Ramos, L. (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Química nova, 26 (6), 863 – 871. doi.org/10.1590/S0100-40422003000600015

Ree, R., V., & Annevelink, E. (2007). Status report biorefinery. Agrotechnology & Food Sciences Group. Wageningen university & research e-depot. Retrieved from: https://research.wur.nl/en/publications/status-report-biorefinery-2007

Riça, L., Moraes, L., Souza, D., Souza, R., Muller, M. (2016). Aproveitamento de torta do tabaco gerado na produção de biodiesel para a obtenção de bioplásticos. Revista Jovens Pesquisadores, 6, (2). doi.org/10.17058/rjp.v6i2.7523.

Rodrigues, C., Lorenci A., Letti, L. (2013). Biotecnologia aplicada à agroindústria. Materiais lignocelulósicos como matéria prima para a obtenção de biomoléculas de valor comercial, 4. Retrieved from: http://pdf.blucher.com.br.s3-sa-east-1.amazonaws.com/openaccess/97885212 11150/completo.pdf

Rosa, M., Souza, M., Figueiredo, M., Morais, J., Santaella, S., Leitão, R. (2011). Valorização de resíduos da agroindústria. II Simpósio Internacional sobre Gerenciamento de Resíduos Agropecuários e AgroindustriaiS, 1. Retrieved from: https://www.researchgate.net/ publication/259850615_Valorizacao_de_residuos_da_agroindustria

Sadhu, S., Saha, P., Sem, S., Mayilraj, S., Maiti, T. (2013). Production, purification and characterization of a novel thermotolerant endoglucanase from Bacillus strain isolated from cow dung. Springerplus, 2 (10). doi: 10.1186/2193-1801-2-10

Salim, A., Grbavcic, S., Sekuljica, N., Stefanovic, A., Tanaskovic, S., Lukovic, N., Jugovic, Z. (2016) Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid-state fermentation on agricultural by-products: the evaluation of substrate pretreatment methods. Bioresource Technology, 228, 193 – 200. doi: 10.1016/j.biortech.2016.12.081

Santos, M., Borshiver, S., Couto, M. (2011). Iniciativas para o uso da biomassa lignocelulósica em biorrefinarias: a plataforma sucroquímica no mundo e no Brasil. Economia e Energia, 15 (82). Retrieved from: https://ecen.com/eee82/eee82p/revistaeee82p_empdf.pdf

Shaiki, N., Patel, A., Mehta, S., Patel N. (2013). Isolation and screening of cellulolytic bacteria inhabiting different environment and optimization of cellulase production. Universal Journal of Environmental Research and Technology, 3 (1), 39 – 49. Retrieved from: http://www.environmentaljournal.org/3-1/ujert-3-1-4.pdf

Silva, I., Lima, R., Ruzene, D., Silva, D da. (2019). Residuos agroindustriais como biomassa alternativa para geração de energia distribuída em comunidades rurais. Energias alternativas: tecnologias sustentáveis para o nordeste brasileiro. Aracaju: associação acadêmica de propriedade intelectual, 189 – 211. Retrieved from: https://ri.ufs.br/jspui/handle/riufs/12607

Singh, R., Kumar, M., Mittal, A., Mehta, P. (2016). Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6 (2), 174. doi: 10.1007/s13205-016-0485-8

Sukumaran, R., Singhania, R., Pandey, A. (2005). Microbial cellulases: production, application and challenges. Journal os Scientific and Industrial Research, 64 (11), 832 – 844. Retrieved from: https://www.researchgate.net/publication/228635285_Microbial_cellulases-Production_applications_and_challenges

Thomas, L., Ram, H., Kumar, A., Singh, V. (2016). Production, optimization and characterization of organic solvent tolerant cellulases from lignocellulosic waste-degrading Actinobacterium, promicromonospora sp. VP111. Applied biochemistry and biotechnology, 179, 863 – 879. doi: 10.1007/s12010-016-2036-5

Tipathi, A., Yadav, A., Jha, A., Srivastava, S. Utilizing of sugar refinery waste (Cane Molasses) for production of bio-plastic under submerged fermentation process. Journal of Polymers and the Environment, 20 (2), 446 – 453. doi: 10.1007/s10924-011-0394-1

Trivedi, N., Gupta, V., Kumar, M., Kumari, P., Reddy, C., Jha, B. (2011). An alkali-halotolerant cellulase from Bacilus flexus isolated from green seaweed Ulva lactuca. Carbohydrate polymers. 83 (2), 891 – 897. doi: 10.1016/j.carbpol.2010.08.069

Tu, W. C. & Hallet, J. P. (2019). Recent advances in the pretreatment of lignocellulosis biomass. Current opinion in green and sustainable chemistry, 20, 11 – 17. doi.org/10.1016/j.cogsc.2019.07.004

Vandenberghe, L., Carvalho, J. C., Libardi, N., Rodrigues, C., Soccol, C. (2016). Microbial enzyme factories: current trends in production processes and commercial aspects. Agro-industrial wastes as feedstock for enzymes production, chapter 1, 1 – 22.

Vigneswaran, C., Ananthasubramanian, M., Kandhavadivu, P. (2014). Industrial enzymes. Bioprecessing of textiles. Fundamentals for applications and research perspective, chapter 2, p 23 – 52.

Watanabe, H., & Tokuda, G. (2011). Animal cellulases. Cellular and molecular life sciences, 58 (9), 1167 – 1178. doi: 10.1007/PL00000931

Woiciechowski, A., Neto, C., Vandenberghe, L., Neto, D., Sydney, A., Letti, L., Karp, S., Torres, L., Soccol, C. (2020). Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance – conventional processing and recent advances. Bioresourse technology, 304. doi: 10.1016/j.biortech.2020.122848.

Zhang, X., & Zhang, Y. (2020). Cellulases: characteristics, sources, production and applications. Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals and polymers, 1, 131 – 146. Retrieved from: https://bioenergycenter.org/besc/ publications/Zhang_cellulases_yr7.pdf

Zoghlami, A., & Paes, G. (2018). Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Frontiers in Chemistry Chemical and Process Engineering, 7. doi: 10.3389/fchem.2019.00874

Zuin, V., & Ramin, L. (2018). Green and sustainable separation of natural products from agro-industrial waste: challenge, potentialities and perspectives on emerging approaches. Topics in Current Chemistry, 376 (3). doi.org/10.1007/s41061-017-0182-z

Published

17/07/2020

How to Cite

GAETE, A. V.; TEODORO, C. E. de S.; MARTINAZZO, A. P. Use of agro-industrial waste for cellulase production: a review. Research, Society and Development, [S. l.], v. 9, n. 8, p. e567985785, 2020. DOI: 10.33448/rsd-v9i8.5785. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/5785. Acesso em: 12 nov. 2024.

Issue

Section

Agrarian and Biological Sciences