Environmental assessment of limnological and sediment quality in a stream in the Central West Brazil
DOI:
https://doi.org/10.33448/rsd-v9i8.6288Keywords:
Pollution; Aquatic environment; Monitoring; Environmental integrity.Abstract
The study aimed to evaluate limnological quality in the Curral de Arame stream, to determine concentrations of metals in water and sediments, to assess whether the types of land use and cover interfere in aquatic quality. In addition to correlating land use and cover in relation to the concentrations of metals in the water between the dry and rainy periods and to investigate the potential non-carcinogenic risks of metals in the water for aquatic biota. The pH values, in the dry period, were lower than the limit established by Brazilian legislation in the medium and low portion of the stream. Fe in water exceeded the limit established by the Brazilian resolution, in the four locations. Metal concentrations in sediments were within safe limits for aquatic life. The Curral de Arame stream showed reduced riparian vegetation in some places, due to the expansion of agricultural activities. We found, in the dry and rainy periods, a negative correlation between the proportions of agriculture and forest fragments, showing when there is an increase in agricultural areas, the reverse occurs to the reduction of native vegetation cover. In the rainy season, there was a negative and significant correlation between forest fragments compared to Fe in the water in the Curral de Arame stream, demonstrating when there is greater supply of vegetation, which reduces the carrying of contaminants in the course of the aquatic system. In the Curral de Arame stream, in the dry and rainy periods, it presented a non-carcinogenic risk in the water for the aquatic biota in relation to the Fe values. In this sense, the Curral de Arame stream is experiencing some type of environmental stress, mainly due to the reduction of native vegetation cover around this aquatic environment.
References
Albuquerque, A. F., Ribeiro, J. S., Kummrow, F., Nogueira, A. J. A., Montagner, C. C., & Umbuzeiro, G. A. (2016). Pesticides in Brazilian freshwaters: a critical review. Environ Sci: Processes Impacts, 18, 779-787.
Amaral, J. A. M., Morchi, E. P., Oliveira, H., Carvalho Filho, A., Naime, U. J., & Santos, R. D. (2000). Levantamento semidetalhado dos solos do campo experimental de Dourados, da Embrapa Agropecuária Oeste, Município de Dourados, MS. 33. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/243690/1/CPAODOC.2200.pdf.
Ardeshir, R. A., Zolgharnein, H., Movahedinia, A., Salamat, N., & Zabihi, E. (2017). Comparison of waterborne and intraperitoneal exposure to fipronil in the Caspian white fish (Rutilus frisii) on acute toxicity and histopathology. Toxicology Reports, 4, 348-357.
Bonnail, E., Buruaem, L. M., Morais, L. G., Abessa, D. M. S., Sarmiento, A. M., & DelValls, T. Á. (2017). Metal contamination and fractionation in sediments from the lower basin of the Vale do Ribeira (SE, Brazil). Environ Monit Assess, 18(6), 189-245. https://doi.org/10.1007/s10661-017-5971-x.
Burrell, T. K., O’Brien, J. M., Graham, S. E., Simon, K. S., Harding, J., & McIntosh, A. R. (2014). Riparian shading mitigates stream eutrophication in agricultural catchments. Freshwater Sci, 33(1):73-84. https://doi.org/10.1086/674180.
CETESB. Companhia de Tecnologia de Saneamento Ambiental. (2010). Relatório da
qualidade das praias litorâneas do Estado de São Paulo. São Paulo, 160 p.
CONAMA. (2005). Conselho Nacional do Meio Ambiente. Resolução n 357. Diário Oficial da União de 17 de Março de 2005. Recuperado de http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459. Accessed 20 June 2020.
CONAMA. (2012). Conselho Nacional do Meio Ambiente. Resolução n° 454 de 1° de novembro de 2012. Resource document. Ministério do Meio Ambiente. (in portuguese). Recuperado de http://www.icmbio.gov.br/cepsul/images/stories/legislacao/Resolucao/ 2012/res_conama_4542012_materialserdragadoemaguasjurisdicionaisbrasileiras.pdf. Acessed 18 June 2020.
Cherubin, M. R., Franco, A. L. C., Cerri, C. E. P., Karlen, D. L., Pavinato, O. S., Rodrigues, M., Davies, C. A., & Cerri, C. C. (2016). Phosphorus pools responses to land-use change for sugarcane expansion in weathered Brazilian soils. Geoderma, 265, 27-38. doi: https://doi.org/10.1016/j.geoderma.2015.11.017.
Clesceri, L. S., Eaton, A. D., Greenberg, A. E., & Frason, M. A. (1996). Standard methods for the examination of water and wasterwater. 19th ed. Supplement. Washington, DC. 43p.
Dourado, P. L., Rocha, M. P., Roveda, L. M., Raposo, J. L., Junio, Cândido, L. S., Cardoso, C. A., Morales, M. A., Oliveira, K. M., & Grisolia, A. B. (2016). Genotoxic and mutagenic effects of polluted surface water in the midwestern region of Brazil using animal and plant bioassays. Genet Mol Biol, 40(1),123-133. https://doi.org/10.1590/1678-4685-GMB-2015-0223.
Driessnack, M. K., & Jamwal Niyogi, S. (2017). Effects of chronic waterborne cadmium and zinc interactions on tissue specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Ecotoxicology and Environmental Safety, 140, 65-75. http://dx.doi.org/10.1016/j.ecoenv.2017.02.023.
Environmental Systems Research Institute (ESRI). (2017). ArcGIS test GIS for the desktop, versão 10.3. Maps throughout this article were created using ArcGIS® software by Esri trial version. ArcGIS® and ArcMap™ are the intellectual property of Esri Copyright © Esri. All rights reserved. For more information about Esri® software, please visit www.esri.com.
Gárriz, Á., Del Fresno, P. S., Carriquiriborde, P., & Miranda, L. A. (2018). Effects
of heavy metals identified in Chascomús shallow lake on the endocrine- reproductive axis of pejerrey fish (Odontesthes bonariensis). Gen Comp Endocrinol, S0016-6480(17), 30874-2. https://doi. org/10.1016/j.ygcen.2018.06.013.
Garcia, A. L. H., Matzenbacher, C. A., Santos, M. S., Prado, L., Picada, J. N., Premoli, S. M., Correa, D. S., Niekraszewicz, L., Dias, J. F., Grivicich, I., & Silva, J. (2017). Genotoxicity induced by water and sediment samples from a river under the influence of brewery effluent. Chemosphere, 169, 239-248. http://dx.doi.org/10.1016/j.chemosphere.2016.11.081.
Gonçalves, G. G., Daniel, O., Comunello, É., Arai, F. K., & Vitorino, A. C. T.. (2010). Evolução do uso e cobertura do solo na bacia hidrográfica do Rio Dourados-MS, Brasil. Caminhos de Geografia, 11(36), 366-374.
Gonçalves, C. S., Souza, Braga, F. M., & Casatti, L. (2018). Trophic structure of coastal freshwater stream fishes from an Atlantic rainforest: evidence of the importance of protected and forest-covered areas to fish diet. Environmental Biology of Fishes, 101(6), 933-948. https://doi.org/10.1007/s10641-018-0749-8.
Hess, T., Aldaya, M., Fawell, J., Franceschini, H., Ober, E., Schaub, R., & Schulze-Aurich, C. (2014). Understanding the impact of crop and food production on the water environment--using sugar as a model. J Sci Food Agric, 94, 2-8.
Instituto Brasileiro de Geografa e Estatística (IBGE). (2013). Recuperado de http://downloads.ibge.gov.br/downloads_geociencias.htm. Acessado em 22 de Março de 2020.
Islam, F., Wang, J., Farooq, M. A., Khan, M. S. S., Xu, L., Zhu, J., Zhao, M., Muños, S., Li, Q. X., & Zhou, W.. (2018). Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ Int, 111, 332-35.
Jackson, C. R., Leigh, D. S., Scarbrough, S. L., & Chamblee, J. F. (2015). Herbaceous versus forested riparian vegetation: Narrow and simple versus wide, woody and diverse stream habitat. River Research and Applications, 31, 847-857. https://doi.org/10.1002/rra.2783.
Jindal, R., & Verma, S. (2015). In vivo genotoxicity and cytotoxicity assessment of cadmium chloride in peripheral erythrocytes of Labeo rohita (Hamilton). Ecotoxicology and Environmental Safety, 118,1-10. http://dx.doi.org/10.1016/j.ecoenv.2015.04.005.
Lorion, C. M., & Kennedy, B. P. (2009). Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams. Ecol Appl, 19(2), 468-479. https://doi.org/10.1890/08-0050.1.
Maurya, P. K., Malik, D. S., Yadav, K. K., Kumar, A., Kumar, S., & Kamyab, H. (2019). Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicology reports, 6,472-481. https://doi.org/10.1016/j.toxrep.2019.05.012.
Paula, S. M., Ramires, I., Dantas, F. G. S., Teodósio, T. K. C., Campos, K. B. G., Brabes, K. C. S., & Negrão, F. J. (2013). Qualidade da Água do Rio Dourados, MS-Parâmetros Físico-Químicos e Microbiológicos. Evidência, 13(2),83-100.
R Core Team. (2019). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.R-project.org.
Reis, D. A., Santiago, A. F., Nascimento, L. P., & Roeser, H. M. P. (2017). Influence of environmental and anthropogenic factors at the bottom sediments in a Doce River tributary in Brazil. Environ Sci Pollut, 24(8), 7456-7467. http://dx.doi.org/10.1007/s11356-017-8443-5.
Ruiz de Arcaute, R., Soloneski, S., & Larramendy, M. L. (2016). Toxic and genotoxic effects of the 2, 4-dichlorophenoxyacetic acid (2, 4-D)-based herbicide on the Neotropical fish Cnesterodon decemmaculatus. Ecotoxicology and Environmental Safety, 128,222-229. doi: 10.1016/j.ecoenv.2016.02.027.
Silva, Y. J. A. B., Cantalice, J. R. B., Nascimento, C. W. A., Singh, V. P., Silva, Y. J. A. B., Silva, C. M. C. A. C., Silva, M. O., & Guerra, S. M. S. (2017). Bedload as an indicator of heavy metal contamination in a Brazilian anthropized watershed. Catena, 153,106-113. http://dx.doi.org/10.1016/j.catena.2017.02.004.
Teresa, F. B., & Casatti L. (2017). Trait-based metrics as bioindicators: Responses of stream fish assemblages to a gradient of environmental degradation. Ecological Indicators, 75, 249-258. https://doi.org/10.1016/j.ecolind.2016.12.041.
Zabaloy, M. C., & Gómez, M. A. (2014). Isolation and characterization of indigenous 2,4-D herbicide degrading bacteria from an agricultural soil in proximity of Sauce Grande
River, Argentina. Ann. Microbiol, 64, 969-974.
Zeni, J. O., Mayorga, M. A. P., Fuentes, C. A. R., Brejão, G. L., & Casatti, L. (2019). How deforestation drives stream habitat changes and the functional structure of fish assemblages in different tropical regions. Aquatic Conservation, 29(8), 1238-1252. https://doi.org/10.1002/aqc.3128.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Lucilene Finoto Viana, Giovana Torres Rosso, Sidnei Eduardo Lima-Junior, Yzel Rondon Súarez, Julio César Jut Solórzano, Claudia Andrea Lima Cardoso
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.