Application of principal component analysis method (PCA) for fault detection in chemical plants

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.6335

Keywords:

Monitoring; Fault detection; PCA.

Abstract

Control systems are used in chemical industries to reduce the value of process variable deviations from the desired value known as setpoint. Even if conventional controllers contribute to reduce those errors, there is a possibility to occur system faults, which are a not allowed deviation due to some characteristic property or system parameters. Developing new fault detection techniques is the key to meet a demand growing complexity of industrial systems and their performances that aim to achieve better efficiency. This work aims to apply the Principal Component Analysis (PCA) method to detect faults in chemical plants. PCA collects historical process data and constructs a statistical model from them, besides allowing the order reduction of multivariable models to facilitate its implementation. Two case studies were performed involving CSTR (Continuously Stirred Tank Reactor) with heating jacket and a non-isothermic CSTR in order to verify the efficiency of the proposed method in detecting failures in monitored control systems. Both failures in sensors and systems submitted to step disturbances were assessed using PCA and T2 of Hotelling and Q statistics. The PCA proved to be an efficient method in fault detections involving the case studies presented, which indicates its potential to be applied in chemical industry controllers.

Author Biography

Davi Leonardo de Souza, Universidade Federal do Triângulo Mineiro

Departamento de Engenharia Química (DEQ)

References

Alvarez, G. D. (2009). Fault detection using principle component analysis (PCA) in a wastewater treatment plant (WWTP). In: Proceedings Of The 62nd International Student’s Scientific Conference - St Petersburg, Russia.

Alkaya, A. & Eker, I. (2011). Variance sensitive adaptive threshold-based PCA method for fault detection with experimental application. ISA Transactions, v.50, 287p.

Awhangbo, L., Bendoula, R., Roger, J. M. & Béline, F. (2020). Fault detection with moving window PCA using NIRS spectra for the monitoring of anaerobic digestion process. Water Science & Technology. v.81. 367p.

Bastidas, M. E. H. (2018). Detecção e diagnóstico de falhas baseado em modelos empíricos no subespaço das variáveis de processo (EMPVSUB). Dissertação de Mestrado – Universidade Federal do Rio Grande do Sul – Porto Alegre.

Bequette, B.W. (1998). Process Dynamics – Modeling, Analysis and Simulation. New Jersey: Prentice Hall, 471p.

Bin Shams, M.A.; Budman, H.M. & Duever, T.A. (2011). Fault detection, identification and diagnosis using CUSUM based PCA. Chemical Engineering Science. v. 66, 4488p.

Britto, R.S. (2014). Detecção de falhas com pca e pls aplicados a uma planta didática. Dissertação de Mestrado - Universidade Federal de Sergipe – UFS. São Cristovão.

Chiang, L. H.; Russel, E. L. & Braatz, R. D. (2001). Fault Detection and Diagnosis in Industrial Systems. Springer: London.

Isermann, R. (1997). Supervision, fault-detection and fault-diagnosis methods: An introduction. Control Engineering Practice. v. 15, n. 5, 639p.

Jing, C. & Hou, J. (2015). SVM and PCA based fault classification approaches for complicated industrial process. Neurocomputing. v.167. 636p.

Li, W., Peng, M., Wang, Q. (2018). Improved PCA method for sensor fault detection and isolation in a nuclear power plant. Nuclear Engineering and Technology. v.51. 146p.

Pereira A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Reis, L. L. G. (2008). Controle Tolerante com Reconfiguração Estrutural Acoplado a Sistemas de Diagnóstico de Falhas. Dissertação de Mestrado. Universidade Federal de Uberlândia-UFU. Uberlândia.

Sánchez-Fernández, A., Baldán, F. J., Sainz-Palmero, G. I., Benítez, J. M. & Fuente, M. J. (2018). Fault detection based on time series modeling and multivariante statistical process control. Chemometrics and Intelligent Laboratory Sistems. v.182, 57p.

Souza, D. L. (2011). Metodologia para o Monitoramento de Sistemas de Controle na Indústria Química. Tese de Doutorado. Universidade Federal de Uberlândia. Uberlândia.

Souza, D. L., Granzotto, M. H., Almeida, G. M. & Lopes, L. C. O. (2014). Fault detection and diagnosis using support vector machines: A SVC and SVR comparison. Journal of Safety Engineering. v.3, 18p.

Tidriri, K., Chatti, N., Verron, S. & Tiplica, T. (2016). Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges. Annual Reviews in Control. v.42, 63p.

Venkatasubramanian, V., Rengaswamy, R., Yin, K. & Kavuri, S. N. (2003). A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Computers and Chemical Engineering. v.27, 293p.

Venkatasubramanian, V. Rengaswamy, R., Kavuri, S. N. & Yin, K. (2003). A review of process fault detection and diagnosis Part III: Process history based methods. Computers and Chemical Engineering. v.27, 327p.

Yang, X. B.; Jin, X. Q.; Du, Z. M. & Zhu, Y. H. (2011). A novel model-based fault detection method for temperature sensor using fractal correlation dimension. Building and Environment. v.46, 970p.

Published

03/08/2020

How to Cite

MENDES, T. F.; SOUZA, D. L. de. Application of principal component analysis method (PCA) for fault detection in chemical plants. Research, Society and Development, [S. l.], v. 9, n. 8, p. e957986335, 2020. DOI: 10.33448/rsd-v9i8.6335. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6335. Acesso em: 19 apr. 2024.

Issue

Section

Engineerings