Specific energy consumption in drying coffee with resistive heating system and heat pump

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7297

Keywords:

Drying; Heat pump; Coffea arabica L.; Energy.

Abstract

In Brazil, the use of heat pumps in drying processes is limited to a few experimental works, with the use of imported equipment for strictly laboratory use, on very small scales. Thus, the work brings important contributions, as it provides a series of information, such as energy data, that can be used for dimensioning. In the laboratory research work on drying natural and pulped coffee at different temperatures, two systems were used: a conventional dryer with resistive heating and a prototype of a hygroscopic controller based on heat technology. The objective of this work was to determine and evaluate the consumption of electric energy, the specific rate of water removal (SMER) and the heat pump performance coefficient (COP). The SMER experimental values ​​obtained for the heat pump dryer ranged between 0.0188 and 0.1169 kg of water / kWh, whereas for the conventional dryer, these values ​​were between 0.0058 and 0.01 kg of water / kWh. The results showed that the heat pump dryer was more efficient than the conventional, sensitive heating dryer and that the SMER values ​​depend on the drying conditions and the physical characteristics of the product.

References

Aktaş, M., Ceylan, İ., & Gürel, A. E. (2014). Testing of a condensation-type heat pump system for low-temperature drying applications. International Journal of Food Engineering, 10(3), 521-531.

Aktaş, M., Khanlari, A., Aktekeli, B., & Amini, A. (2017). Analysis of a new drying chamber for heat pump mint leaves dryer. International Journal of Hydrogen Energy, 42(28), 18034-18044.

Alves, G. E.; Isquierdo, E. P.; Borém, F. M.; Siqueira, V. C.; Oliveira, P. D.; Andrade, E. T. (2013). Cinética de secagem de café natural para diferentes temperaturas e baixa umidade relativa. Coffee Science, 8(2), 238-247.

Borém, F. M., Isquierdo, E. P., Alves, G. E., Ribeiro, D. E., Siqueira, V. C., & Taveira, J. H. D. S. (2018). Quality of natural coffee dried under different temperatures and drying rates. Coffee Science, 13(2), 159-167.

Brasil, Ministério da Agricultura, Pecuária e Abastecimento. Secretaria Nacional de Defesa Agropecuária. Regras para análise de sementes. Brasília, 2009. 399 p.

Dong, W., Hu, R., Chu, Z., Zhao, J., & Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234(1), 121-130.

Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food chemistry, 272(1), 723-731.

Goneli, A. L., Martins, E. A., Jordan, R. A., Geisenhoff, L. O., & Garcia, R. T. (2016). Experimental dryer design for agricultural products. Engenharia Agrícola, 36(5), 938-950.

Hossain, M. A., Gottschalk, K., & Hassan, M. S. (2013). Mathematical model for a heat pump dryer for aromatic plant. Procedia Engineering, 56(1), 510-520.

Jordan, R. A., Cortez, L. A., Barbin, D. F., & Lucas Junior, J. D. (2016). Heat pump for thermal power production in dairy farm. Engenharia Agrícola, 36(5), 779-791.

Jordan, R. A., Cortez, L. A., Silveira Jr, V., Cavalcanti-Mata, M. E., & Oliveira, F. D. D. (2018). Modeling and testing of an ice bank for milk cooling after milking. Engenharia Agrícola, 38(4), 510-517.

Jordan, R. A.; Siqueira, V. C.; Cavalcanti-Mata, M. E. R. M.; Hoscher, R. H ; Mabasso, G. A.; Motomyia, A. V. A.; Oliveira, F. C.; Santos, R. C.; Quequeto, W. D. (2020). Cinética de secagem de café natural e descascado a baixa temperatura e umidade relativa com emprego de uma bomba de calor. Research, Society and Development, 9(1), e388985528.

Kulapichitr, F., Borompichaichartkul, C., Suppavorasatit, I., & Cadwallader, K. R. (2019). Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food chemistry, 291(1), 49-58.

Liu, Y., Zhao, K., Jiu, M., & Zhang, Y. (2017). Design and drying technology research of heat pump Lentinula edodes drying room. Procedia Engineering, 205(1), 983-988.

Mellmann, J., & Fürll, C. (2008). Drying facilities for medicinal and aromatic plants-specific energy consumption and potential for optimisation. Zeitschrift fur Arznei-& Gewurzpflanzen, 13(3), 127-133.

Siqueira, V. C.; Borém, F. M.; Alaves, G. E.; Isquierdo, E. P.; Pinto, A. C. F.; Ribeiro, D. E.; Ribeiro, F. C. (2017). Drying kinetics of processed natural coffee with high moisture content. Coffee Science, 12(3), 400-409.

Strømmen, I.; Eikevik, T.M.; Alves-Filho, O.; Syverud, K., Jonassen, O.; “Low temperature Drying with Heat Pumps – New Generations of High Quality Dried products”. The 2nd Nordic Drying Conference, Copenhagen Denmark, 2003.

Taşeri, L.; Aktas, M.; Şevik, S.; Gülcü, M.; Seҫin, G. U.; Aktekeli, B. (2018). Determination of Drying Kinetics and Quality Parameters of Grape Pomace Dried with a Heat Pump Dryer. Food Chemistry, 260(15), 152-159.

Vilela, C. A. A.; Artur, P. O. (2008). Secagem do açafrão (Curcuma longa L.) em diferentes cortes geométricos. Ciência e Tecnologia de Alimentos, 28(2), 387-394.

Ziegler, T., Jubaer, H., & Mellmann, J. (2013). Simulation of a heat pump dryer for medicinal plants. Chemie Ingenieur Technik, 85(3), 353-363.

Published

19/08/2020

How to Cite

Jordan, R. A., Siqueira, V. C. ., Quequeto, W. D., Cavalcanti-Mata, M. E. R. M. ., Hoscher, R. H. ., Mabasso, G. A. ., Battilani, M. ., Oliveira, F. C. de ., Martins, E. A. S. ., & Freitas, R. L. . (2020). Specific energy consumption in drying coffee with resistive heating system and heat pump. Research, Society and Development, 9(9), e303997297. https://doi.org/10.33448/rsd-v9i9.7297

Issue

Section

Agrarian and Biological Sciences