Characterization of Fe-Mo alloy obtained by electroplating

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7328

Keywords:

Experimental design; Metal alloys; Corrosion.

Abstract

In this work, an experimental design associated with the response surface methodology (RSM) technique was used, to evaluate the effect of deposition parameters, current density, and pH of the electrolytic bath, on the properties of Fe-Mo coatings. obtained by electrodeposition. The morphological characteristics of the coatings were evaluated by SEM and the proportional ratio of the deposited metals was evaluated by EDX. The corrosion resistance of the alloys in a corrosive medium containing chloride ions (3.5 %, NaCl) was evaluated using the techniques of Potentiodynamic Polarization (PP) and Electrochemical Impedance Spectroscopy (EIS). The results of chemical composition showed that iron was electrodeposited in a greater proportion in all experiments, confirming its inducing effect on the molybdenum deposition mechanism. The corrosion results showed that the coatings obtained in the experimental conditions of 60 mA/cm² and pH 6 presented the best anticorrosive performance among the evaluated systems. The experimental optimization showed that the pH variable of the electrolytic bath had a greater influence on the results of the chemical composition of the alloy compared to the current density variable. Therefore, the results presented here confirm the importance of using experimental optimization techniques applied to obtain coatings obtained by electrodeposition with controlled properties for specific applications.

References

Amador Salomão, P. E., Suski, A., Pinheiro, W. F., & Andrade, A. L. de A. (2019). Estudo de proteção contra corrosão em armaduras de aço da construção civil. Research, Society and Development, 8(1), e181504. https://doi.org/10.33448/rsd-v8i1.504

Barbano, E. P., Carvalho, M. F., & Carlos, I. A. (2016). Electrodeposition and characterization of binary Fe-Mo alloys from trisodium nitrilotriacetate bath. Journal of Electroanalytical Chemistry, 775, 146–156.

Costa, J. D., Sousa, M. B., Alves, J. J. N., Evaristo, B. O.; Queiroga, R. A., Santos, A. X., Maciel, T. M., Campos, A. R. N., Santana, R. A. C., & Prasad, S. (2018). Effect of Electrochemical Bath Composition on the Preparation of Ni-W-Fe-P Amorphous Alloy. International Journal of Electrochemical Science, 13, 2969-2985.

França, F. M., Souza, G. V., & Guedes, F. N. de J. (2019). Estudo do processo corrosivo e prospecção da vida útil do aço API 5L X70 com e sem revestimento de nióbio em solo quimicamente tratado. Research, Society and Development, 8(9), e20891238. https://doi.org/10.33448/rsd-v8i9.1238

Gao, S.; Liu, Y., & Kou, X. (2015). Effect of Electrolyte pH and Deposition Time on the Microstructure and Magnetic Properties of Electrodeposited Fe2CoSn Heusler Alloy. International Journal of Electrochemical Science, 10, 8727-8737.

Gomes, G. M. de O., Vieira, P. de C., Guedes, F. N. de J., & Monnerat, C. S. (2019). Estudo do efeito corrosivo de cloreto e brometo em amostras de aço carbono e aço inox. Research, Society and Development, 8(5), e1685866. https://doi.org/10.33448/rsd-v8i5.866

Kazimierczaka, H., Ozga, P., & Socha, R. P. (2013). Investigation of electrochemical co deposition of zinc and molybdenum from citrate solutions. Electrochimica Acta, 104, 378– 390.

Kuznetsov, V. V., Golyanin, K. E., Ladygina, Y. S., Pshenichkina, T. V., Lyakhov, B. F., & Pokholok, K. V. (2015). Electrodeposition of Iron–Molybdenum Alloy from Ammonium–Citrate Solutions and Properties of Produced Materials. Russian Journal of Electrochemistry, 51 (8), 748–757.

Lima, F. de A., Carvalho, M. D. de, Martins, D. S., Oliveira, A. S., Silveira, D. M. da, Siqueira, A. M. de O., & Bellido, J. D. A. (2020). Avaliação da resistência à corrosão em chapas de aço-carbono protegidas por revestimentos nanocerâmicos a base de zircônio e titânio. Research, Society and Development, 9(3), e183932715. https://doi.org/10.33448/rsd-v9i3.2715

Oliveira, A. L. M., Costa, J. D., Sousa, M. B., Alves, J. J. N., Campos, A. R. N., Santana, R. A. C., & Prasad, S. (2015). Studies on electrodeposition and characterization of the Ni–W–Fe alloys coatings. Journal of Alloys and Compounds, 619, 697–703.

Oliveira, J. A. M., Raulino, A. M. D., Raulino, J. L. C., Campos. A. R. N., Prasad, S., & Santana, R. A. C. (2017). Efeito da densidade de corrente e pH na obtenção da liga Ni-Fe por eletrodeposição. Revista Matéria, 22 (1), e-11773.

Oliveira, J. A. M., Santana, R. A. C., & Wanderley Neto, A. O. (2020). Characterization of the chitosan-tungsten composite coating obtained by electrophoretic deposition. Progress in Organic Coatings, 143, 105631.

Oliveira, J. A. M., Silva, P. S. G., Santana, R. A. C., & Silva, G. P. (2019). Estudo do efeito de pH do banho eletrolítico nas propriedades da liga Ni-W obtida por eletrodeposição. Educação Ciência e Saúde, 6, (1), 1-16.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). METODOLOGIA da pesquisa científica, Santa Maria: UAB/NTE/UFSM.

Pozzo, L. Y., Da Conceição, T. F., Spinelli, A.; Scharnagl, N., & Nunes Pires, A. T. (2019). The influence of the crosslinking degree on the corrosion protection properties of chitosan coatings in simulated body fluid. Progress in Organic Coatings, 137, 105328.

Safizadeh, F., Sorour, N., Ghali, E., & Houlachi, G. (2017). Study of the hydrogen evolution reaction on Fe–Mo–P coatings as cathodes for chlorate production. International Journal of Hydrogen Energy, 42 (8), 5455-5463.

Santana, R. A. C., Campos, A. R. N., & Prasad, S. (2007). Otimização do Banho Eletrolítico da Liga Fe-W-B Resistente à Corrosão. Química Nova, 30 (2), 360-365.

Silva, G. P., Santos, A. G., Cunha, R. S., Silva, P. S., & Oliveira, J. A. M. (2015). Avaliação de Propriedades Físicas e Químicas de Eletrodepósitos de Ni-W-P Obtidos em Célula de Hull. Química Nova, 38 (10), 1253-1259.

Szczygieł, B., Laszczyńska, A., & Tylus, W. (2010). Influence of molybdenum on properties of Zn–Ni and Zn–Co alloy coatings. Surface & Coatings Technology, 204, 1438–1444.

Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., Pellicer, E., & Podlaha-Murphy, E. J. P. (2012). Modern Trends in Tungsten Alloys Electrodeposition with Iron Group Metals. Surface Engineering and Applied Electrochemistry, 48 (6), 491–520.

Winiarski, J., Tylus, W., Winiarska, K., & Szczygieł, B. (2015). The influence of molybdenum on the corrosion resistance of ternary Zn–Co–Mo alloy coatings deposited from citrate–sulphate bath. Corrosion Science, 91, 330–340.

Zangari, G. (2015). Electrodeposition of Alloys and Compounds in the Era of Microelectronics and Energy Conversion Technology. Coatings, 5, 195-218.

Published

21/08/2020

How to Cite

OLIVEIRA, J. A. M. .; OLIVEIRA, A. S. .; RAULINO, A. de M. D. .; RAULINO, J. L. C. .; ALMEIDA, A. F. de .; DANTAS, D. L. .; CAMPOS, A. R. N. .; SANTANA, R. A. C. de . Characterization of Fe-Mo alloy obtained by electroplating. Research, Society and Development, [S. l.], v. 9, n. 9, p. e354997328, 2020. DOI: 10.33448/rsd-v9i9.7328. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7328. Acesso em: 17 nov. 2024.

Issue

Section

Engineerings