Optimization of the electrolytic bath used in the electrodeposition process of the Ni-W alloy

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7331

Keywords:

Electrodeposition; Corrosion; Ni-W alloys.

Abstract

The aim of this work was to use an experimental design associated with the Response Surface Methodology (MSR) technique to evaluate the effect of the variation in the concentration of reagents used in the preparation of the electrolytic bath used to obtain the Ni-W alloy by electrodeposition. The methodology used in this study was quali-quantitative. The effect of the variation of the reagent’s concentration on the chemical composition of the deposited alloy, on the cathodic efficiency of the deposition process, and on the morphology of the coatings was evaluated. The corrosion resistance of the Ni-W alloy in a medium containing chloride ions (NaCl solution) was investigated using the Potentiodynamic Polarization (PP) technique. Results of composition showed that nickel was deposited preferentially in all experimental conditions evaluated. The coatings showed a nodular morphology dependent on the concentration of nickel in the deposits. The coating obtained using the highest concentrations of the metal sources (levels +1 and +1) showed the highest efficiency of the deposition process (65.30%). The Ni-W alloy showed greater protection against corrosion in a medium containing chloride ions, compared to the Fe-W alloy.

References

Arganaraz, M. P. Q., Ribotta, S. B., Folquer, M. E., Gassa, L. M., Benítez, G., Vela, M. E., & Salvarezza, R. C. (2011). Ni–W coatings electrodeposited on carbon steel: Chemical composition, mechanical properties and corrosion resistance. Electrochimica Acta, 56, 5898– 5903.

Chianpairot, A., Lothongkum, G., Schuh, C. A., & Boonyongmaneerat, Y. (2011). Corrosion of nanocrystalline Ni–W alloys in alkaline and acidic 3.5 wt.% NaCl solutions. Corrosion Science, 53, 1066–1071.

Costa, J. D., Sousa, M. B., Alves, J. J. N., Evaristo, B. O., Queiroga, R. A., Santos, A. X., Maciel, T. M., Campos, A. R. N., Santana, R. A. C., & Prasad, S. (2018). Effect of Electrochemical Bath Composition on the Preparation of Ni-W-Fe-P Amorphous Alloy. International Journal of Electrochemical Science, 13, 2969-2985.

Eliaz, N., Sridhar, T. M., & Gileadi, E. (2005). Synthesis and characterization of nickel tungsten alloys by electrodeposition. Electrochimica Acta, 50, 2893–2904.

Faveri, D., Perego, P., Converti, A., & Borghi, M.D. (2002). Optimization of Xylitol Recovery by Crystallization from Synthetic Solutions and Fermented Hemicellulose Hydrolyzates. Chemical Engineering Journal, 90, 291-298.

Graef, G., Anderson, K., Groza, J., & Palazoglu, A. (1996). Phase evolution in electrodeposited Ni-W-B alloy. Materials Science and Engineering: B, B41, 253-257.

Hamid, Z. A. (2003). Electrodeposition of cobalt–tungsten alloys from acidic bath containing cationic surfactants. Materials letters, 57, 2558-2564.

Murat, E. (2002). Response Surface Methodological Approach for Inclusion of Perfluorocarbon in Actinorhodin Fermentation Medium. Process Biochemistry, 38, 667-673.

Oliveira, J. A. M., Raulino, A. M. D., Raulino, J. L. C., Campos. A. R. N., Prasad, S., & Santana, R. A. C. (2017). Efeito da densidade de corrente e pH na obtenção da liga Ni-Fe por eletrodeposição. Revista Matéria, 22 (1), e-11773.

Oliveira, J. A. M., Santana, R. A. C., & Wanderley Neto, A. O. (2020). Characterization of the chitosan-tungsten composite coating obtained by electrophoretic deposition. Progress in Organic Coatings, 143, 105631.

Oliveira, J. A. M., Silva, P. S. G., Santana, R. A. C., & Silva, G. P. (2019). Estudo do efeito de pH do banho eletrolítico nas propriedades da liga Ni-W obtida por eletrodeposição. Educação Ciência e Saúde, 6, (1), 1-16.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). METODOLOGIA DA PESQUISA CIENTÍFICA, Santa Maria: UAB/NTE/UFSM https://repositorio.ufsm.br/bits tream/handle/1/15824/Lic_Computacao_Metodologia Pesquisa-Cientifica.pdf?sequence=1.

Pozzo, L. Y., Da Conceição, T. F., Spinelli, A., Scharnagl, N., & Nunes Pires, A. T. (2019). The influence of the crosslinking degree on the corrosion protection properties of chitosan coatings in simulated body fluid. Progress in Organic Coatings, 137, 105328.

Prasad S. (1993). Eletrodeposição de camadas de liga níquel-tungstênio e determinação de níquel por voltametria de onda quadrada. Tratamento de Superfície, 58, 23-28.

Prasad S., Marinho F. A., & Silva L. B. (2000). A comparative study on electrodeposition of Fe-W-B and Fe-Mo-B alloys. Journal of the Indian Chemical Society, 77, 311-313.

Santana, R. A. C., Campos, A. R. N., & Prasad, S. (2007). Otimização do Banho Eletrolítico da Liga Fe-W-B Resistente à Corrosão. Química Nova, 30 (2), 360-365.

Santana, R. A. C., Prasad, S., Campos, A. R. N., Araújo, F. O., Silva, G. P., & Lima-Neto, P. (2006). Electrodeposition and Corrosion Behaviour of a Ni-W-B Amorphous Alloy. Journal of Applied Electrochemistry, 36, 105-113.

Sriraman, K. R., Raman, S. G. S., & Seshadri, S. K. (2006). Synthesis and evaluation of hardness and sliding wear resistance of electrodeposited nanocrystalline Ni–W alloys. Materials Science and Engineering A, 418, 303–311.

Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., Pellicer, E., & Podlaha-Murphy, E. J. P. (2012). Modern Trends in Tungsten Alloys Electrodeposition with Iron Group Metals. Surface Engineering and Applied Electrochemistry, 48 (6), 491–520.

Wang, H., Liu, R., Cheng, F., Cao, Y., Ding, G., & Zhao, X. (2010). Electrodepositing amorphous Ni-W alloys for MEMS. Microelectronic Engineering, 87, 1901–1906.

Published

26/08/2020

How to Cite

OLIVEIRA, J. A. M.; ALMEIDA, A. F. de .; COSTA NETO, H. da; SOUSA, M. B. de; COSTA, J. D. .; DANTAS, D. L. .; CAMPOS, A. R. N. .; SANTANA, R. A. C. de . Optimization of the electrolytic bath used in the electrodeposition process of the Ni-W alloy . Research, Society and Development, [S. l.], v. 9, n. 9, p. e478997331, 2020. DOI: 10.33448/rsd-v9i9.7331. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7331. Acesso em: 25 apr. 2024.

Issue

Section

Engineerings