Viabilities for obtaining, manufacturing and applying composites using bamboo powders and ophthalmic lens waste

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7455

Keywords:

Composites; Bamboo and ophthalmic lens waste powders; Polyester resin; Environmental sustainability.

Abstract

The objective of this research was to obtain composites using petioles bamboo and ophthalmic lens waste powders and polyester resin. Such materials have no defined application, they are produced in large quantities and their waste is discarded irregularly in landfills. Bamboo and ophthalmic lens rejects powders were produced, with particle sizes of 2.07 mm and 1.14 mm, respectively. Preliminary tests were carried out to determine the maximum quantities of each material to be mixed with the polyester resin matrix, in order to guarantee the good processability of the new material produced. The mass quantities used were 10 and 15% bamboo, 15 and 40% tailings and a hybrid composition with 5% bamboo and 20% tailings, to obtain the desired composites. The composite plates were manufactured by the cold compression wet molding process in closed mold. Several tests were carried out to characterize the composites that were produced. It was found a decrease in the mechanical strength of the composite in comparison to the matrix, concluding that the bamboo powders and ophthalmic lens waste had a filling load function in the composites produced. The most expressive result of the composites was in the impact resistance, corresponding to 0.55 J/cm2 for OLWP 40% higher in 39.6% in relation to the polyester resin matrix. As a practical application, table and bench tops were manufactured with the most economically and ecologically viable composite, 40% OLWP.

Author Biographies

Salomão Sávio Batista, Federal University of Rio Grande do Norte

Mechanical Manufacturing Technologist at the Federal Institute of Rio Grande do Norte, Master and Doctoral Student in Mechanical Engineering at the Federal University of Rio Grande do Norte, effective professor at the Federal Institute of Rio Grande do Norte and previously at the Federal Institute of Bahia, teaching various disciplines such as technical drawing, Workshop Practice, Welding, Turning, Mechanical Technology, Metrology etc.

Luiz Guilherme Meira de Souza, Universidade Federal do Rio Grande do Norte

Graduated from the Federal University of Paraíba (1980), master's degree from the Federal University of Rio Grande do Norte (1987) and doctorate in Materials Science and Engineering from the Federal University of Rio Grande do Norte (2002). He is currently an associate professor at the Federal University of Rio Grande do Norte. He has experience in the area of Mechanical Engineering, with emphasis on Harnessing Energy, acting mainly on the following themes: alternative sources, solar energy, alternative materials, prototypes and low cost.

Denis Max de Lima Bezerra, Federal University of Rio Grande do Norte

graduated in mechanical engineering from UFRN (2019).

Raimundo Vicente Pereira Neto, Universidade Federal do Rio Grande do Norte

Graduated in mechanical engineering from UFRN (2019).

References

ABNT/CB-18 - NBR NM 248 - Aggregates - Sieve analysis of fine and coarse aggregates

ASTM D3039/D3039M-17, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, 2017.

ASTM D7264/D7264M-15, Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, 2015.

ASTM D6110-18, Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics, ASTM International, West Conshohocken, PA, 2018.

ASTM D792-13, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, 2013.

ASTM D570-98(2010) e1, Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, PA, 2010.

ASTM D5930-17, Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique, ASTM International, West Conshohocken, PA, 2017.

ASTM D1435-13 - Standard Practice for Outdoor Weathering of Plastics, ASTM International, West Conshohocken, PA, 2013.

ASTM E2550-17, Standard Test Method for Thermal Stability by Thermogravimetry, ASTM International, West Conshohocken, PA, 2017.

Almeida, A. C. et al. (2017). Wood-Bamboo Particleboard: Mechanical Properties, Bioresources, V. 12, N. 4, P. 7784-7793.

Bao, Z. et al, (2016). A Review Of The Application Of Renewable Resources In Preparing Acrylic Polymer Latex, Polymers From Renewable Resources, V. 7, N. 1.

Bahari et al, (2016). Utilizing Malaysian Bamboo For Use In Thermoplastic Composites, Journal Of Cleaner Production, V. 110, P. 16-24.

Buckingham, K.; Jep, P., (2011). The Potential Of Bamboo Is Constrained By Outmoded Policy Frames, Ambio, 40(5): P.544–548.

Buckingham, K.; Wu, L. Lou, Y.; (2014). Can’t See The (Bamboo) Forest For The Trees: Examining Bamboo’s Fit Within International Forestry Institutions, Ambio, 43(6): P. 770–778.

Costa, L.C.F., (2017). Obtaining and studying a composite of polyester matrix and charge of marble residues. Dissertação de mestrado. Universidade Federal do Rio Grande do Norte, Natal.

Chiu, S. et al. (2016). Mechanical Properties Of Urethane Diacrylate/Bamboo Powder Composite Fabricated By Rapid Prototyping System. Rapid Prototyping Journal, V. 22. N. 4, Pp. 676-683.

Cury, P. H. A.; Saraiva, J. (2018). Produção De Lentes Orgânicas No Pólo Industrial De Manaus, Gestão E Produção, São Carlos, V. 25, N. 4, P. 901-915.

Gomes, A. C. et al. in,( 2017). Gerenciamento Dos Resíduos Gerados Na Indústria De Lentes Oftálmicas: Estudo De Caso, N. V, Anais Do Congresso Brasileiro De Gestão Ambiental E Sustentabilidade... João Pessoa: Congestas.

Gomes, J. W., et al (2015) Production and characterization of polymeric composite materials using mdf waste in powder and poliester terephthalic resin. Materials Research, vol.18, n.2, p.25-29.

Guimarães Júnior, M.; Novack, K.; M.; Botaro, V. R., (2010). Caracterização Anatômica Da Fibra De Bambu (Bambusa Vulgaris) Visando Sua Utilização Em Compósitos Poliméricos, Revista Ibero-Americana De Polímeros, V. 11, N. 7, P.442-456.

International Bamboo and Rattan Organisation (INBAR), (2019). Disponível em: .

Kajikawa, S., Iizuka, T., (2016) Effect Of Molding Temperature On Fluidity And Injection Moldability Of Oven-Dry Steam-Treated Bamboo Powder. Journal of Materials Processing Technology. V . 225. N. 4, Pp. 433-438.

Kausar, A., (2018). A Review Of Filled And Pristine Polycarbonate Blends And Their Applications, Journal Of Plastic Film & Sheeting, V. 34, N. 1.

Kharaev, A. M.; Bazheva, R. Ch.; Chaika, A. A., (2007). Composite Materials Based On Polycarbonate (Review). International Polymer Science And Technology. 34(10): P.27-33.

La Mantia, F. P.; Morreale, M., (2011). Green composites: a brief review. Composites Part A: Applied Science And Manufacturing, v. 42, n. 6, p. 579-588.

Lee, P.H; Odlin, M.; Yin, H. Development Of A Hollow Cylinder Test For The Elastic Modulus Distribution And The Ultimate Strength Of Bamboo. Construction & Building Materials, V. 51, P.235–243.

Li, X., (2004). Physical, Chemical And Mechanical Properties Of Bamboo And Its Utilization Potential For Fiberboard Manufacturing. Dissertação De Mestrado.School Of Renewable Natural Resources, Louisiana, P.76.

Margem, F. M. M., et al. (2010b). The Dynamic-Mechanical Behavior Of Epoxy Matrix Composites Reinforced With Ramie Fibers. Revista Matéria, V. 15, N. 2, Pp. 164 – 171.

Marinho, N. P. et al, ( 2013). Some Physical And Mechanical Properties Of Medium-Density Fiberboard Made From Giant Bamboo. Materials Research, São Carlos, Vol. 16, N. 6, P. 1398-1404.

Mota, I. O. et al.(2017). Estudo Das Propriedades Físicas E Mecânicas Do Bambu Brasileiro (Bambusa Vulgaris Vittata) Para Aplicação Na Construção De Sistemas Hidráulicos Alternativos De Distribuição De Água À Baixa Pressão, Rea – Revista De Estudos Ambientais (Online), V.19, N. 1, P.18-26.

Nw Pech-may,C. et al, (2017)Heat transport in epoxy and polyester carbonyl iron microcomposites: The effect of concentration and temperature, Journal Of Composite Materials. Disponível em: < https://journals.sagepub.com/doi/abs/10.1177/0021998317723694>.

Oliveira, L. C. S. (2017). Obtenção e caracterização de um compósito de matriz de resina de poliéster e resíduos de madeira produzidos em marcenarias. Dissertação de mestrado do PPGEM/UFRN.

Ribeiro, M.G. S; et al. (2017). Protótipo De Vila Ecológica Na Amazônia. In: Conferência Brasileira De Materiais E Tecnologias Não- Convencionais: Materiais E Tecnologias Para Construções Sustentáveis. Rea – Revista De Estudos Ambientais (Online), V.19, N. 1, P.18-26.

Rosa, R.A. et al, (2016). Influência Da Espécie, Tratamento Preservativo E Adesivo Nas Propriedades Físicas Do Bambu Laminado Colado. Ciência Florestal, V. 26, N. 3, P.913-924.

Rosa, R. A. et al., (2016). Influência Da Espécie, Tratamento Preservativo E Adesivo Nas Propriedades Físicas Do Bambu Laminado Colado. Ciência Florestal, V. 26, N. 3, P. 913-924.

Ruivinho, C. I. C. C., (2010). Valorização Dos Resíduos De Lentes Oftálmicas Orgânicas. Dissertação De Mestrado. Universidade Do Algarve.

Secretaria Nacional da Agricultura, (2019). Disponível em < https://www.sna.agr.br>.

Souza, L. G. M. et al. (2017). Composite utilizing residues of marble and granite for building popular homes, Journal of Building Engineering, volume 9, pages 192-197. Disponível em < https://www.sciencedirect.com/journal/journal-of-building-engineering>.

Souza, L. G. V. M. (2018). Efeito da hibridização de um compósito com matriz de resina poliéster e carga de tecido de fibra de algodão com uma carga de tecido de fibra de vidro tipo E. Tese de doutorado. Universidade Federal do Rio Grande do Norte, Natal.

Taborda-Rios, J. A.; Cañas-Mendoza, L. A; Tristancho-Reyes J. L,( 2017). Comparative Study Of The Mechanical Properties Of The Polyester Resin Reinforced With Bamboo Fiber As The Substitute Material Fiberglass. Revista Dyna, Colombia, 84(202), P. 35-41.

Torres, V. S. M., (2015). Uso Del Bambú Como Material De Construcción En Estructuras No Convencionales En La Ciudad De Huancayo, Apuntes De Ciencia E Sociedad, V. 5, N. 1.

Wang, B. et al, (2019). Isotactic Polybutene-1/Bamboo Powder Composites With Excellent Properties At Initial Stage Of Molding, Polymers (Basel), 11(12),.

Yuen, J. Q., Fung, T., Ziegler, A. D.,( 2017). Carbon Stocks In Bamboo Ecosystems Worldwide:Estimates And Uncertainties, Forest Ecology And Management, V. 393, P. 113-138.

Zakikhani, P. et al. (2016). Morphological, Mechanical, And Physical Properties Of Four Bamboo Species. Bioresources, V. 7, N.1.

Zhou, et al. (2015). Efeitos Do Agente De Acoplamento De Zirconaluminato Nas Propriedades Mecânicas, Comportamento Reológico E Estabilidade Térmica De Compósitos De Espuma De Pó De Bambu / Polipropileno, Eur. J. Wood Prod. 73, 199-207.

Downloads

Published

06/09/2020

How to Cite

BATISTA, S. S. .; SOUZA, L. G. M. de .; BEZERRA, D. M. de L. .; PEREIRA NETO, R. V. . Viabilities for obtaining, manufacturing and applying composites using bamboo powders and ophthalmic lens waste . Research, Society and Development, [S. l.], v. 9, n. 9, p. e775997455, 2020. DOI: 10.33448/rsd-v9i9.7455. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7455. Acesso em: 18 nov. 2024.

Issue

Section

Engineerings