Resistance training with and without insulin administration: an analysis of the cardiac plexus and epicardial adipose tissue

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7602

Keywords:

Heart; Neurons; Resistance Training; Epicardial fat.

Abstract

The cardiac plexus is a vast network of neurons grouped into ganglia distributed throughout the myocardium. The epicardial adipose tissue covers the heart performing important functions, such as, lipid storage. However, its exaggerated expression might represent a risk factor, which can be prevented by the practice of physical activities that improves the heart contractile propulsive capacity. Insulin has been used in association with physical exercise so as to increase muscle mass and improve physical performance. Both insulin and exercise have been evidenced due to their neurotrophic effects. The purpose of this study was to ascertain whether insulin associated with resistance training could structurally modify the cardiac plexus and epicardial adipose tissue. Four groups (n = 6) of male Swiss mice were used: non-trained saline, non-trained insulin; trained saline; trained insulin. The training was performed on a vertical ladder at 90% of the maximum load, 3 times/week for 8 consecutive weeks. After the experimental period, the hearts of the animals were removed, and 5-μm sections were stained with Hematoxylin/Eosin, Giemsa and Picrossirius in order to evaluate the structures of the cardiac plexus. There was no significant difference with regard to the area and the total number of neurons, nor to the area with collagen. However, whereas insulin administration hypertrophied the adipocytes and predisposed an inflammatory environment, physical exercise played an anti-inflammatory role. As a conclusion, it is worth mentioning that resistance training did not change the cardiac plexus, however the epicardial adipose tissue was reduced, an effect antagonized by insulin.

References

Akamatsu, F. E., Gama, E. F., Souza, R. R., Leme, R. J. A., Liberti, E. A. (2007). Pre and post natal undernutrition influences the development of the subepicardic ganglion capsule. Braz. J. Morphol, 24 (2),118-125.

Brunelli, D. T., Chacon-Mikahil, M. P., Gáspari, A. F., Lopes, W. A., Bonganha, V., Bonfante, I. L., Bellotto, M. L., Libardi, C. A., & Cavaglieri, C. R. (2015). Combined Training Reduces Subclinical Inflammation in Obese Middle-Age Men. Medicine and science in sports and exercise, 47(10), 2207–2215. https://doi.org/10.1249/MSS.0000000000000658.

Czech, M. P., Tencerova, M., Pedersen, D. J., & Aouadi, M. (2013). Insulin signalling mechanisms for triacylglycerol storage. Diabetologia, 56(5), 949–964. https://doi.org/10.1007/s00125-013-2869-1.

Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., & Raptis, S. A. (2011). Insulin effects in muscle and adipose tissue. Diabetes research and clinical practice, 93 Suppl 1, S52–S59. https://doi.org/10.1016/S0168-8227(11)70014-6.

Ferrari C. K. (2013). Aspectos críticos do abuso de hormônios protéicos no exercício e no esporte: atualização [Critical aspects of peptide hormone abuse in exercise and sports: an update]. Revista de la Facultad de Ciencias Medicas (Cordoba, Argentina), 70(3), 153–162.

Gama, E. F., Santarém, J. M., Liberti, E. A., Jacob Filho, W., & Souza, R. R. (2010). Exercise changes the size of cardiac neurons and protects them from age-related neurodegeneration. Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft, 192(1), 52–57. https://doi.org/10.1016/j.aanat.2009.09.004.

Giada, F., Biffi, A., Agostoni, P., Anedda, A., Belardinelli, R., Carlon, R., Carù, B., D'Andrea, L., Delise, P., De Francesco, A., Fattirolli, F., Guglielmi, R., Guiducci, U., Pelliccia, A., Penco, M., Perticone, F., Thiene, G., Vona, M., Zeppilli, P., & Joint Italian Societies' Task Force on Sports Cardiology (2008). Exercise prescription for the prevention and treatment of cardiovascular diseases: part I. Journal of cardiovascular medicine (Hagerstown, Md.), 9(5), 529–544. https://doi.org/10.2459/JCM.0b013e3282f7ca77

Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana, S. S., & Nimmo, M. A. (2011). The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nature reviews. Immunology, 11(9), 607–615. https://doi.org/10.1038/nri3041.

Ichige, M. H., Santos, C. R., Jordão, C. P., Ceroni, A., Negrão, C. E., & Michelini, L. C. (2016). Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure. The Journal of physiology, 594(21), 6241–6254. https://doi.org/10.1113/JP272730.

Jimenes, D. R., Muniz, E., Sant’ana, D. M. G., Gomes, C. R. G., Barbosa, C. P. (2017). Inervação cardíaca: um estudo de revisão com ênfase no plexo cardíaco. Revista Uningá, 52 (1), 92-99.

Kim, M. K., Tomita, T., Kim, M. J., Sasai, H., Maeda, S., & Tanaka, K. (2009). Aerobic exercise training reduces epicardial fat in obese men. Journal of applied physiology (Bethesda, Md. : 1985), 106(1), 5–11. https://doi.org/10.1152/japplphysiol.90756.2008.

Iacobellis G. (2015). Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nature reviews. Endocrinology, 11(6), 363–371.

Monti, M. , Di Renzi, P. , Pirro, M. , Borgognoni, F. , & Vincentelli, G. (2015). New evidences about the strict relationship between the epicardial fat and the aerobic exercise. IJC Metabolic & Endocrine, 6 . doi: 10.1016/j.ijcme.2015.01.004.

Michailowsky, V., Silva, N. M., Rocha, C. D., Vieira, L. Q., Lannes-Vieira, J., & Gazzinelli, R. T. (2001). Pivotal role of interleukin-12 and interferon-gamma axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. The American journal of pathology, 159(5), 1723–1733. https://doi.org/10.1016/s0002-9440(10)63019-2.

Nemoto, T., Yanagita, T., Satoh, S., Maruta, T., Kanai, T., Murakami, M., & Wada, A. (2011). Insulin-induced neurite-like process outgrowth: acceleration of tau protein synthesis via a phosphoinositide 3-kinase~mammalian target of rapamycin pathway. Neurochemistry international, 59(6), 880–888. https://doi.org/10.1016/j.neuint.2011.08.002.

Neto, W.K., Silva, W.A., Ciena, A.P., Anaruma, C.A., Gama, E.F. (2017) Vertical climbing for rodent resistence treining: A discussion about training parameters. International Jorn. Of Sports Scienc 6, 36-49. https://doi.org/ 10.5923/s.sports.201601.07

Pereira, V., Vedovelli, K. S., Muller, G. Y., Depieri, Y. F., Avelar, D., de Amo, A., Jimenes, D. R., Martins, J., Silvério, A. C., Gomes, C., Godoi, V., & Pedrosa, M. (2019). Pros and cons of insulin administration on liver glucose metabolism in strength-trained healthy mice. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 52(2), e7637. https://doi.org/10.1590/1414-431X20187637.

Rosa, E. F., Silva, A. C., Ihara, S. S., Mora, O. A., Aboulafia, J., & Nouailhetas, V. L. (2005). Habitual exercise program protects murine intestinal, skeletal, and cardiac muscles against aging. Journal of applied physiology (Bethesda, Md. : 1985), 99(4), 1569–1575. https://doi.org/10.1152/japplphysiol.00417.2005.

Stanford, K. I., Middelbeek, R. J., & Goodyear, L. J. (2015). Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations. Diabetes, 64(7), 2361–2368. https://doi.org/10.2337/db15-0227.

Talman, A. H., Psaltis, P. J., Cameron, J. D., Meredith, I. T., Seneviratne, S. K., & Wong, D. T. (2014). Epicardial adipose tissue: far more than a fat depot. Cardiovascular diagnosis and therapy, 4(6), 416–429. https://doi.org/10.3978/j.issn.2223-3652.2014.11.05.

Wilund, K. R., Tomayko, E. J., Wu, P. T., Ryong Chung, H., Vallurupalli, S., Lakshminarayanan, B., & Fernhall, B. (2010). Intradialytic exercise training reduces oxidative stress and epicardial fat: a pilot study. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 25(8), 2695–2701. https://doi.org/10.1093/ndt/gfq106.

Zanou, N., & Gailly, P. (2013). Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cellular and molecular life sciences : CMLS, 70(21), 4117–4130. https://doi.org/10.1007/s00018-013-1330-4.

Published

01/09/2020

How to Cite

Jimenes, D. R., Pereira, V. A. R. ., Pereira, A. V. ., Pedrosa, M. M. D. ., Berti, J. A. ., Sant’Ana, D. de M. G. ., & Barbosa, C. P. . (2020). Resistance training with and without insulin administration: an analysis of the cardiac plexus and epicardial adipose tissue. Research, Society and Development, 9(9), e641997602. https://doi.org/10.33448/rsd-v9i9.7602

Issue

Section

Agrarian and Biological Sciences