Mechanical loading on the functional activity of carbonic anhydrase II in the periodontium




Carbonic Anhydrases; Periodontium; Traumatic dental occlusion.


Carbonic anhydrase II (CA II) is involved with the acid-base homeostasis of tissue. This study aims to evaluate the effect of traumatic dental occlusion (TDO) by means of CA II expression in osteoclasts and osteocytes (near the lamina dura and in the centre of alveolar bone septum), in the periodontal ligament (PDL) and in lining cells (periosteum). For this study, 50 male Wistar rats aged seven weeks were divided into 2 groups: Loaded and Unloaded group. The study periods were 2, 5, 7, 14 and 21 days. The Mann-Whitney U test for quantitative, and the Chi-square test for semi-quantitative analyses were used for group comparison, along with Bonferroni’s post-hoc test. Statistically significant differences between the groups were observed in the number of osteoclasts in the lamina dura (days 5, 7 and 21); the alveolar bone septum (days 2 and 7); osteocytes near the lamina dura (days 2, 5, 7 and 14); and in the centre of the alveolar bone septum (days 2, 5, 7 and 14). There were also differences between-group in CA II expression in the lining cells on days 7 and 14. TDO increases CA II expression in osteoclasts, osteocytes, the PDL and lining cells of the periosteum. Clinical Relevance: Traumatic dental occlusion stimulates higher cells activity of the alveolar bone at short (lamina dura) and long (centre of alveolar bone and periosteum) distances.


Biskobing, D. M., Fan, D., Fan, X., & Rubin, J. (1997). Induction of carbonic anhydrase II expression in osteoclast progenitors requires physical contact with stromal cells. Endocrinology, 138(11),4852-7. doi: 10.1210/endo.138.11.5492.

Brandini, D. A., Amaral, M. F., Poi, W. R., Casatti, C. A., Bronckers, A. L., Everts, V., & Beneti, I. M. (2016). The effect of traumatic dental occlusion on the degradation of periodontal bone in rats. Indian journal of dental research : official publication of Indian Society for Dental Research, 27(6), 574–580.

Brandini, D. A., Debortoli, C. V. L., Felipe Akabane, S. T., Poi, W. R., & Amaral, M. F. (2018). Systematic review of the effects of excessive occlusal mechanical load on the periodontum of rats. Indian journal of dental research: official publication of Indian Society for Dental Research, 29(6), 812–819.

Davies, S. J., Gray, R. J., Linden, G. J., & James, J. A. (2001). Occlusal considerations in periodontics. Br Dent J, 191(11), 597-604. doi: 10.1038/sj.bdj.4801245.

Glickman, I. (1971). Role of occlusion in the etiology and treatment of periodontal disease. J Dent Res, 50(2), 199-204. doi: 10.1177/00220345710500020501.

Gu, G., Nars, M., Hentunen, T. A., Metsikkö, K., & Väänänen, H. K. (2006). Isolated primary osteocytes express functional gap junctions in vitro. Cell Tissue Res, 323(2), 263-71. doi: 10.1007/s00441-005-0066-3.

Harrel, S. K., & Nunn, M. E. (2001). The effect of occlusal discrepancies on periodontitis. II. Relationship of occlusal treatment to the progression of periodontal disease. J Periodontol, 72(4), 495-505. doi: 10.1902/jop.2001.72.4.495.

Hazenberg, J. G., Hentunen, T. A., Heino, T. J., Kurata, K., Lee, T. C., & Taylor, D. (2009). Micro damage detection and repair in bone: fracture mechanics, histology, cell biology. Technol Health Care, 17(1), 67-75. doi: 10.3233/THC-2009-0536.

Islam, A., Glomski, C., & Henderson, E. S. (1990). Bone lining (endosteal) cells and hematopoiesis: a light microscopic study of normal and pathologic human bone marrow in plastic-embedded sections. Anat Rec, 227(3), 300-6. doi: 10.1002/ar.1092270304.

Jansen, I. D., Mardones, P., Lecanda, F., de Vries, T. J., Recalde, S., Hoeben, K. A., & Elferink, R. P. J. O. (2009). Ae2 (a,b)-deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J, 23(10), 3470-81. doi: 10.1096/fj.08-122598.

Kaku, M., Uoshima, K., Yamashita, Y., & Miura, H. (2005). Investigation of periodontal ligament reaction upon excessive occlusal load-osteopontin induction among periodontal ligament cells. J Periodontal Res, 40(1), 59-66. doi: 10.1111/j.1600-0765.2004.00773.x.

Lehenkari, P., Hentunen, T. A., Laitala-Leinonen, T., Tuukkanen, J., & Väänänen, H. K. (1998). Carbonic anhydrase II plays a major role in osteoclast differentiation and bone resorption by effecting the steady state intracellular pH and Ca2+. Exp Cell Res, 242(1), 128-37. doi: 10.1006/excr.1998.4071.

Mann, V., Huber, C., Kogianni, G., Jones, D., & Noble, B. (2006). The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J Musculoskelet Neuronal Interact, 6(4), 408-17.

Nomura, S., & Takano-Yamamoto, T. (2000). Molecular events caused by mechanical stress in bone. Matrix Biol, 19(2), 91-6. doi: 10.1016/s0945-053x(00)00050-0.

Ochi, K., Wakisaka, S., Youn, S. H., Hanada, K., & Maeda, T. (1998). Carbonic anhydrase isozyme II immunoreactivity in the mechanoreceptive Ruffini endings of the periodontal ligament in rat incisor. Brain Res, 779(1-2), 276-9. doi: 10.1016/s0006-8993(97)01085-8.

Oksala, N., Levula, M., Pelto-Huikko, M., Kytömäki, L., Soini, J. T., Salenius, J., Kähönen, M., Karhunen, P. J., Laaksonen, R., Parkkila, S., & Lehtimäki, T. (2010). Carbonic anhydrases II and XII are up-regulated in osteoclast-like cells in advanced human atherosclerotic plaques-Tampere Vascular Study. Annals of medicine, 42(5), 360–370.

Palcanis, K. G. (1973). Effect of occlusal trauma on interstitial pressure in the periodontal ligament. J Dent Res, 52(5), 903-10. doi:10.1177/00220345730520054401.

Riihonen, R. (2010). R.Acid-base balance and oxidative metabolism in calcified tissues. Dissertation, Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Finland Annales Universitatis Turkuensis, Medica-Odontologica, Turku, Finland.

Riihonen, R., Supuran, C. T., Parkkila, S., Pastorekova, S., Väänänen, H. K., & Laitala-Leinonen, T. (2007). Membrane-bound carbonic anhydrases in osteoclasts. Bone, 40(4), 1021-31. doi: 10.1016/j.bone.2006.11.028.

Sundquist, K. T., Leppilampi, M., Järvelin, K., Kumpulainen, T., & Väänänen, H. K. (1987). Carbonic anhydrase isoenzymes in isolated rat peripheral monocytes, tissue macrophages, and osteoclasts. Bone, 8(1), 33-8. doi: 10.1016/8756-3282(87)90129-3.

Tanaka, Y., Maruo, A., Fujii, K., Nomi, M., Nakamura, T., Eto, S., & Minami, Y. (2000). Intercellular adhesion molecule 1 discriminates functionally different populations of human osteoblasts: characteristic involvement of cell cycle regulators. J Bone Miner Res, 15(10), 1912-23. doi: 10.1359/jbmr.2000.15.10.1912.

Teo, B. H., Bobryshev, Y. V., Teh, B. K., Wong, S. H., & Lu, J. (2012). Complement C1q production by osteoclasts and its regulation of osteoclast development. Biochem J, 447(2), 229-37. doi: 10.1042/BJ20120888.

Väänänen, H. K., & Parvinen, E. K. (1983). High active isoenzyme of carbonic anhydrase in rat calvaria osteoclasts. Immunohistochemical study. Histochemistry, 78(4), 481-5. doi: 10.1007/BF00496199.

Wan, H. Y., Sun, H. Q., Sun, G. X., Li, X., & Shang, Z. Z. (2012). The early phase response of rat alveolar bone to traumatic occlusion. Arch Oral Biol, 57(6), 737-43. doi: 10.1016/j.archoralbio.2012.01.002.

Wang, X., Suzawa, T., Ohtsuka, H., Zhao, B., Miyamoto, Y., Miyauchi, T., & Kamijo, R. (2010). Carbonic anhydrase II regulates differentiation of ameloblasts via intracellular pH-dependent JNK signaling pathway. J Cell Physiol, 225(3), 709-19. doi: 10.1002/jcp.22267.

Yoshinaka, M., Ikebe, K., Furuya-Yoshinaka, M., & Maeda, Y. (2014). Prevalence of torus mandibularis among a group of elderly Japanese and its relationship with occlusal force. Gerodontology, 31(2), 117-22. doi: 10.1111/ger.12017.




How to Cite

Brandini, D. A. ., Beneti, I. M., Debortoli, C. V. L., Amaral, M. F., Côvre, L. M., & Casatti, C. A. (2020). Mechanical loading on the functional activity of carbonic anhydrase II in the periodontium. Research, Society and Development, 9(9), e686997719.



Health Sciences