Relationship between exposure to the pesticide Rotenone and the development of motor and non-motor symptoms of Parkinson's disease




Pesticides; Nervous system diseases; Gastrointestinal tract; Parkinson disease.


Introduction: Parkinson's disease (PD) is known for its debilitating motor symptoms and the dependence that its progression causes. Although classic, this condition still does not have its causal factors fully elucidated and, therefore, the prediction sometimes becomes ineffective. In the search for a better understanding of the disease, researchers found an intimate relationship between their symptoms and populations that had contact with the pesticide rotenone, widely used in agricultural processes and that can be an auxiliary factor in the development of the disease in the agricultural population. Objective: To elucidate, based on the literature, the interrelation of Parkinson's Disease with rotenone. Methodology: Integrative literature review that used the descriptors: “Parkinson Disease”, “Rotenone”, “Synucleins”, “Gastrointestinal Tract”, “Vagus Nerve” and “Microbiota” in the databases: PubMed, ScienceDirect, SCIELO, and BVS where 13 documents were selected for analysis that elucidated in their text the relationship between the disease and the substance studied. Results: The works portray an intimate relationship between exposure to rotenone and non-motor symptoms of Parkinson's disease. Also, these symptoms mainly affect signs in the gastrointestinal tract, which sometimes can help in the prediction of the disease long before the manifestation of classic symptoms. Final Considerations: Rotenone has a well-elucidated relationship in the development of Parkinson's disease, besides, this relationship allows a better understanding of the connection between the brain and the gastrointestinal tract through the vagus nerve. Thus, such findings can serve as a basis for a better understanding and prevention of the diagnosis and treatment of PD.


Arnhold, M., Dening, Y., Chopin, M., Arévalo, E., Schwarz, M., & Reichmann, H. et al. (2016). Changes in the sympathetic innervation of the gut in rotenone treated mice as possible early biomarker for Parkinson’s disease. Clinical Autonomic Research, 26(3), 211-222.

Baizabal-Carvallo, J., & Alonso-Juarez, M. (2020). The Link between Gut Dysbiosis and Neuroinflammation in Parkinson’s Disease. Neuroscience, 432, 160-173.

Bu, J., Qiao, X., He, Y., & Liu, J. (2019). Colonic electrical stimulation improves colonic transit in rotenone-induced Parkinson's disease model through affecting enteric neurons. Life Sciences, 231, 116581.

Dantas, É., & Ramalho, D. (2020). O uso de diferentes metodologias no ensino de microbiologia: Uma revisão sistemática de literatura. Research, Society And Development, 9(8), e665986396.

Drolet, R., Cannon, J., Montero, L., & Greenamyre, J. (2009). Chronic rotenone exposure reproduces Parkinson's disease gastrointestinal neuropathology. Neurobiology Of Disease, 36(1), 96-102.

Johnson, M., Stringer, A., & Bobrovskaya, L. (2018). Rotenone induces gastrointestinal pathology and microbiota alterations in a rat model of Parkinson’s disease. Neurotoxicology, 65, 174-185.

Kim, S., Kwon, S., Kam, T., Panicker, N., Karuppagounder, S., & Lee, S. et al. (2019). Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron, 103(4), 627-641.e7.

Klingelhoefer, L., & Reichmann, H. (2015). Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors. Nature Reviews Neurology, 11(11), 625-636.

Klingelhoefer, L., & Reichmann, H. (2017). The Gut and Nonmotor Symptoms in Parkinson's Disease. International Review Of Neurobiology, 787-809.

Koutzoumis, D., Vergara, M., Pino, J., Buddendorff, J., Khoshbouei, H., Mandel, R., & Torres, G. (2020). Alterations of the gut microbiota with antibiotics protects dopamine neuron loss and improve motor deficits in a pharmacological rodent model of Parkinson's disease. Experimental Neurology, 325, 113159.

Martinez, E., Young, A., Patankar, Y., Berwin, B., Wang, L., & von Herrmann, K. et al. (2017). Editor’s Highlight: Nlrp3 Is Required for Inflammatory Changes and Nigral Cell Loss Resulting From Chronic Intragastric Rotenone Exposure in Mice. Toxicological Sciences, 159(1), 64-75.

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., & Petticrew, M. et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1).

Pan-Montojo, F., & Funk, R. (2010). Oral Administration of Rotenone using a Gavage and Image Analysis of Alpha-synuclein Inclusions in the Enteric Nervous System. Journal Of Visualized Experiments, (44).

Pan-Montojo, F., Anichtchik, O., Dening, Y., Knels, L., Pursche, S., & Jung, R. et al. (2010). Progression of Parkinson's Disease Pathology Is Reproduced by Intragastric Administration of Rotenone in Mice. Plos ONE, 5(1), e8762.

Pan-Montojo, F., Schwarz, M., Winkler, C., Arnhold, M., O'Sullivan, G., & Pal, A. et al. (2012). Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Scientific Reports, 2(1).

Perez-Pardo, P., Dodiya, H., Broersen, L., Douna, H., van Wijk, N., & Lopes da Silva, S. et al. (2017). Gut–brain and brain–gut axis in Parkinson's disease models: Effects of a uridine and fish oil diet. Nutritional Neuroscience, 21(6), 391-402.

Perez-Pardo, P., Dodiya, H., Engen, P., Naqib, A., Forsyth, C., & Green, S. et al. (2018). Gut bacterial composition in a mouse model of Parkinson’s disease. Beneficial Microbes, 9(5), 799-814.

Sharma, S., Awasthi, A., & Singh, S. (2019). Altered gut microbiota and intestinal permeability in Parkinson’s disease: Pathological highlight to management. Neuroscience Letters, 712, 134516.

Spielman, L., Gibson, D., & Klegeris, A. (2018). Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochemistry International, 120, 149-163.

Tanner, C., Kamel, F., Ross, G., Hoppin, J., Goldman, S., & Korell, M. et al. (2011). Rotenone, Paraquat, and Parkinson’s Disease. Environmental Health Perspectives, 119(6), 866-872.

Tasselli, M., Chaumette, T., Paillusson, S., Monnet, Y., Lafoux, A., & Huchet-Cadiou, C. et al. (2013). Effects of oral administration of rotenone on gastrointestinal functions in mice. Neurogastroenterology & Motility, 25(3), e183-e193.



How to Cite

Oliveira, J. K. S. de, Carvalho, J. M. de, Silva, C. A., Lima, M. B. de, Cavalcante, P. M. F., & Paiva, D. F. F. (2020). Relationship between exposure to the pesticide Rotenone and the development of motor and non-motor symptoms of Parkinson’s disease. Research, Society and Development, 9(9), e706997917.



Health Sciences