Carbon and nitrogen stocks in the High Biodiversity Silvopastoral System: applied nucleation enabling low carbon livestock production

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8589

Keywords:

Atlantic Forest Biome; GHG; Climate change; Ecological rehabilitation; Ecological restoration; Carbon sequestration.

Abstract

Agriculture has proved to be one of the main sources of greenhouse gases (GHG). Large part of this GHG is related to the production system or inadequate management. This study analyzed the effects of the High Biodiversity Silvopastoral System (SPSnuclei) on pasture cover, and carbon and nitrogen stocks when implanted on treeless pastures (PSA). The variables were measured in three situations, two areas within the SPSnuclei - area close to the nuclei (APN) and a sunny area between the  (p <0.05). AEN had higher values of pasture cover and carbon stock than PSA. The SPSnuclei maintained the same pasture cover and carbon stock than PSA, even with only 90% of the total pasture area, since 10% of the pasture area was fenced off in the tree nuclei. SPSnuclei has the potential to mitigate GHG emissions from conventional livestock minimizing its impact on climate change.

References

Ainalis, A. B. & Tsiouvaras, C. N. (1998). Forage production of woody fodder species and herbaceous vegetation in a silvopastoral system in northern Greece. Agroforestry Systems, 42, 1–11.

Altieri, M. (2012). Agroecologia: bases científicas para uma agricultura sustentável Autor: Peso: Expressão Popular, 400p.

Asfaw, S., Pallante, G., & Palma, A. (2018). Diversification Strategies and Adaptation Deficit : Evidence from Rural Communities in Niger. World Development, 101, 219–234.

Asha, K. M. V., Kurien, K., Bastin, B. & Pradeep, T. K. (2019). High density silvopasture systems for quality forage production and carbon sequestration in humid tropics of Southern India. Agroforestry Systems, 93(1), 185–198.

Assunção, J. (2016). Climate change and agricultural productivity in Brazil : future perspectives. Environmental and Development Economics, 21, 581–602.

Pérez A., M., Medina A. M. F., Hurtado, G. A., Arboleda, E. M., & Medina, S. M.. (2019). Reservas de carbon del pasto Cenchrus clandestinus (Poaceae) en los Sistemas de manejo tradicional y silvopastoril, en diferentes relieves. Revista de Biologia Tropical, 67 (4), 769–783.

Azevedo, T. R., Costa, C., Brandão, A., Dos Santos Cremer, M., Piatto, M., Tsai, D. S. & Kishinami, R. (2018). SEEG initiative estimates of Brazilian greenhouse gas emissions from 1970 to 2015. Scientific Data, 5, 1–43.

Bambo, S. K., Blount, A. R., Nowak, J., Long, A. J., Myer, R. O., & Huber, D. A. (2009). Annual cool-season forage nutritive value and production after overseeding into bahiagrass sod in silvopastoral systems. Journal of Sustainable Agriculture, 33 (8), 917–934.

Barros, F, Gomes, G., Fracetto, M., Andrade, M., & Junior, L. (2018). Silvopastoral systems drive the nitrogen-cycling bacterial community in soil. Ciência e Agrotecnologia, 42(3), 281–290.

Battisti, Z. F. L., Luiz, A., Filho, S., & Sinisgalli, A. (2018). Soil chemical attributes in a high biodiversity silvopastoral system Atributos químicos del suelo en un sistema silvopastoril de alta biodiversidad. Acta Agronomic. (2018) 67 (4) p 486-493.

Beecher, M., Hennessy, D., Boland, T. M., Mcevoy, M., Donovan, M. O. & Lewis, E. (2013). The variation in morphology of perennial ryegrass cultivars throughout the grazing season and effects on organic matter digestibility. Grass and Forage Science, (June), 1–11p.

Bryant, A. M. (1990). Present and future grazing systems. Proceedings of the New Zealand Society of Animal Production, 50.

Caballé G. (2013). Efecto interactivo de la defoliación del estrato herbáceo y la cobertura del estrato arbóreo sobre el crecimiento del estrato herbáceo en sistemas silvopastoriles. Tese Doutorado em Ciências Agropecuária. Universidad de Buenos Aires. Universidad Nacional de La Plata - Argentina.

Cárdenas, C. A. M. & Ibrahim, H. M. (2019). Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agricultural Systems, 93, 229–239.

Cardona, C. A. C., Ramírez, J. F. N., Morales, A. M. T., Murgueitio, E., Orozco, J. D. C., Vera, J. K. & Rosales, R. B. (2013). Contribution of intensive silvopastoral systems to animal performance and to adaptation and mitigation of climate change. Revista Colombiana de Ciências Pecuárias, 76–94.

Carvalho, W. T. V., Minighin, D. C., Gonçalves, L. C., Villanova, D. F. Q., Mauricio, R. M. & Pereira, R. V. G. (2017). Pastagens degradadas e técnicas de recuperação: Revisão. Pubvet, 11(10), 1036–1045. https://doi.org/10.22256/pubvet.v11n10.1036-1045

Castillo, M. Tiezzi, F. & Franzluebbers, A. (2020). Tree species effects on understory forage productivity and microclimate in a silvopasture of the Southeastern USA. Agriculture, Ecosystems & Environment. 295.

Cerri, C. C., Bernoux, M., Cerri, C. E. P. & Feller, C. (2004). Carbon cycling and sequestration opportunities in South America : the case of Brazil. Soil Use and Management, 20, 248–254. https://doi.org/10.1079/SUM2004237

Cerri, C. E. P., Sparovek, G., Bernoux, M., Easterling, W. E., Melillo, M. & Cerri, C. C. (2007). Tropical agriculture and global warming: Impacts and mitigation options. Sci. Agric., 64 (February), 83–99.

Chaturvedi, O. P., Handa, A. K., Kaushal, R., Uthappa, A. R., Sarvade, S. & Panwar, P. (2016). Biomass production and carbon sequestration through agroforestry. Range Mgmt in Agroforestry, 37(2), 116–127.

Chen, W., Huang, D., Liu, N., Zhang, Y., Badgery, W. B., Wang, X. & Shen, Y. (2015). Improved grazing management may increase soil carbon sequestration in a temperate steppe. Scientific Reports, 1–13. https://doi.org/10.1038/srep10892

Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, K. (2017). Grassland management impacts on soil carbon stocks : a new synthesis. Ecological Applications, 27(2), 662–668. https://doi.org/10.1002/eap.1473

Craesmeyer, K.C., Schmitt Filho, A.L., Hotzel, M.J., Diniz, M., Farley, J. Utilização da Sombra por Vacas Lactantes sob Sistema Voisin Silvipastoril no Sul do Brasil. Cadernos de Agroecologia, [S.l.], v. 11, n. 2, jan. 2017. ISSN 2236-7934. http://revistas.aba-agroecologia.org.br/index.php/cad/article/view/21524

Dalzell S.A., Shelton H.M., Mullen B.F., Larsen P. & McLaughlin, G. (2006). Leucaena: a guide to establishment and management. Meat & Livestock Australia Ltd. Sydney, Australia.

Deniz, M., Schmitt Filho, A. L., Farley J., Quadros, S. F., & Hotzel, M. J. (2019). High biodiversity silvopastoral system as an alternative to improve the thermal environment in the dairy farms. International Journal of Biometeorology, v. 63, p 83-92. doi.org/10.1007/s00484-018-1638-8

Deniz, M., Schmitt Filho, A. L., Hötzel, M. J., Tenffen de Sousa, K., Machado Filho, L. C., & P., Sinisgalli, P. A. (2020). Microclimate and pasture preferences by dairy cows under High Biodiversity Silvopastoral System in southern Brazil. International Journal of Biometeorology. DOI 10.1007/s00484-020-01975-0

Dias-Filho, M. B. (2014). Diagnóstico das Pastagens no Brasil. Documentos/Embrapa Pará. Amazônia Oriental, p. 36, Belém - Pará

Domiciano, L. F., Mombach, M. A., Carvalho, P., Pereira, D. H., Cabral, L. S., Lopes, L. B. & Pedreira, B. C. (2016). Performance and behavior of Nellore steer on integrated systems. Animal Production Science, (EMBRAPA 1999).

Ehret, R. Grab, R. & Wachendorf, M. (2015). The effect of shade and shade material on white clover / perennial ryegrass mixtures for temperate agroforestry systems. Agroforestry Systems, 89, 557–570.

Fang, Z., & Peng, C. (2001). Interannual Variability in net primary production and Precipitation. Science, 293, 1–3.

Fernández, G. R. & Fandiño, B. (2013). Producción de forraje y respuesta de cabras en crecimiento en arreglos silvopastoriles basados en Guazuma ulmifolia , Leucaena leucocephala y Crescentia cujete. Corpoica Cienc. Tecnol. Agropecu., 14, 77–89. https://doi.org/10.21930/rcta.vol14_num1_art:345

Fornara, D. A., Olave, R., Burgess, P., Delmer, A., Upson, M., & Mcadam, J. (2018). Land-use change and soil carbon pools : evidence from a long-term silvopastoral experiment. Agricultural Systems, 92, 1035–1046.

Fountain, P. H. (2019). Climate change is accelerating, dangerously bringing the world closer to irreversible change. The New York Times, 2–6.

Gaitán L., Lãderach P., Graefe S., Rao I., & Hoek, R. (2016) Climate-Smart Livestock Systems: An Assessment of Carbon Stocks and GHG Emissions in Nicaragua. PLoS ONE 11(12): doi:10.1371/journal.pone.0167949

Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.

Oliveira, G. L., Carvalho, M. E., Macêdo, E. O., Andrade, A. C. & Edvan, R. L. (2019). Effect of shading and canopy height on pasture of Andropogon gayanus in silvopastoral system. Agroforestry Systems, 5. doi: 10.1007/s10457-019-00458-5

Hernández-Esteban, A., López-Días, M., Cacéres, Y. & Moreno, G. (2018). Are sown legume-rich pastures effective allies for the profitability and sustainability of Mediterranean dehesas? Agroforestry Systems. https://doi.org/10.1007/s10457-018-0307-6

IBGE. (2015). Instituto Brasileiro de Geografia e Estatística: Santa Rosa de Lima. Disponível em: .

IPCC. (2014). Intergovernmental Panel on Climate Change. 1 (October), 27–31.

IPCC. (2019). Climate Change and Land. Aquecimento Global de 1,5°C. Sumário para Formuladores de Políticas. Incheon, República da Coréia da Norte.

Jat, M. L., Dagar, J. C., Sapkota, T. B., Yadvinder-Singh., Govaerts, B., Ridaura, S. L., Saharawat, Y. S., Sharma, R. KTetarwal, J. P., Jat, R. K., Hobbs, H. & Stirling, C. (2016). Climate Change and Agriculture : Adaptation Strategies and Mitigation Opportunities for Food Security in South Asia and Latin America. Advances in Agronomy, v. 137. doi.org/10.1016/bs.agron.2015.12.005

Jose, S. & Dollinger, J. (2019). Silvopasture : a sustainable livestock production system. Agroforestry Systems. 93(1), 1–9.

Junior, M. A. L., Fracetto, F. J. C., Ferreira, J. S., Silva, M.B. & Fracetto, G. G. M. (2020). Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. Catena, 189, doi.org/10.1016/j.catena.2020.104508.

Kirby, K. R. & Potvin, C. (2007). Variation in carbon storage among tree species : Implications for the management of a small-scale carbon sink project. Forest Ecology and Management, v. 246, 208–221 p. https://doi.org/10.1016/j.foreco.2007.03.072

Knops, J. M. H. &, Tilman, D. (2000). Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology, v. 81 nº.1 , 88–98 p.

Vol. 81, No. 1 (Jan. 2000), pp. 88-98 (11 pages)

Kretzer, S. (2019). Influência do sistema silvipastoril com núcleos de alta biodiversidade na dinâmica e microclima forrageiro. Dissertação mestrado em Agroecossistemas, Universidade Federal de Santa Catarina. 80p.

Lenka, S., Lenka, N. Sejian, V. & Mohanty M. (2015) Contribution of Agriculture Sector to Climate Change. In: Sejian V., Gaughan J., Baumgard L., Prasad C. (eds) Climate Change Impact on Livestock: Adaptation and Mitigation. Springer, New Delhi. doi.org/10.1007/978-81-322-2265-1_3

Liang, A., Xinhui, H., Fazhu, Z., Guangxin, R. & Gaihe, Y. (2014). Dynamics of soil carbon and nitrogen stocks following afforestation in the gully region of Loess Plateau, China. Society of Agricultura Engineering, v. 30, 148–157. doi:10.3969/j.issn.1002-6819.2014.23.019

López-Santiago, J. G., Casanova-Lugo, F. Villanueva-López, G., Díaz-Echeverría, V., Solorio-Sánchez , F. J., Martínez-Zurimendi, P., Aryal, D. A. & Chay-Canul, A. (2018). Carbon storage in a silvopastoral system compared Mexico to that in a deciduous dry forest in Michoaca. Agroforestry Systems. V. 93, 199-211 p. doi.org/10.1007/s10457-018-0259-x

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z. & Yang, L. (2010). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, v. 21 1303-1330 p. https://doi.org/10.1080/014311600210191

Luchese, E. B., Favero, L. & Lenzi, E. (2002). Fundamentos da química do solo. Rio de Janeiro: Freitas Bastos, 182p.

Luo, Y., Su, B., Currie, W., Dukes, J. S., Finzi, A., Hartwig, U., Hungate, B. A., McMurtrie, R. E., Oren, R., Parton, W. J., Pataki, D. E., Shaw, M. R. & Field, C. B. (2004). Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide. BioScience. v. 54, 731-739 p. DOI: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2

MAPA. (2012). Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para a Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura. Ministério da Agricultura, 173.

Marchão, R. L., Becquer, T., & Brunet, D. (2011). Predição dos teores de carbono e nitrogênio do solo utilizando espectrometria de infravermelho próximo. Boletim de pesquisa e desenvolvimento, nº 304 EMBRAPA Cerrados. p. 21. ISSN 1676-918x.

Mata, G., Clark, D. A., Edirisinghe, A., Waugh, D. & Minnee, G. S. G. (2007). Predicting accurate paddock-average pasture cover in Waikato dairy farms using satellite images. Proceedings of the New Zealand Society of Animal Production, v. 69 p. doi.org/10.33584/jnzg.2007.69

Mbow, C., Smith, P., Skole, D., Duguma, L. & Bustamante, M. (2014). Science Direct Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Environmental Sustainability, v. 6, p 8–14. doi.org/10.1016/j.cosust.2013.09.002

Munroe, J. W. & Isaac, M. E. (2014). N 2 -fixing trees and the transfer of fixed-N for sustainable agroforestry : a review. Agron. Sustain. Dev., v. 34, p. 417–427. doi 10.1007/s13593-013-0190-5

Murphy, S. & Lodge, G. M. (2002). Ground cover in temperate native perennial grass pastures. I comparison of four estimation methods. The Rangeland Journal, v. 24, p. 288-300. doi: 10.1071/RJ02016

Nguyen, H. Q. (2017). Analyzing the economies of crop diversification in rural Vietnam using an input distance function. Agricultural Systems, v. 153, p. 148–156. doi.org/10.1016/j.agsy.2017.01.024

Oliveira, A. P., Casagrande, D. R., Bertipaglia, L. M. A., Barbero, R. P., Berchielli, T. T., Ruggieri, A. C. & Reis, R. A. (2016). Supplementation for beef cattle on Marandu grass pastures with different herbage allowances. Animal Production Science, v. 56, p. 123–129. doi: 10.1071/AN14636

Oliveira, P. C. & Carvalho C. R. (2010). Respostas ecofisiológica por espécies arbóreas acumuladoras de fósforo na Amazônia. Revista Holos, v.1. https://doi.org/10.15628/holos.2010.317.

Oliveira, P. C., Carvalho C. J. R. (2011). Estratégias de sobrevivência de espécies arbóreas em ambientes deficientes por fósforos na Amazônia. Revista Holos, v. 2. https://doi.org/10.15628/holos.2011.441

Omer, R. M., Hester, A. J., Gordon, I. J. & Swaine, M. D. (2006). Seasonal changes in pasture biomass, production and offtake under the transhumance system in northern Pakistan. Journal of Arid Environments, v. 67, p. 641–660. doi.org/10.1016/j.jaridenv.2006.03.008

Pachauri, R. K. (2013). Conclusions of the IPCC Working Group I Fifth Assessment Report, AR4, SREX, and SRREN. Chairman, Intergovernmental Panel on Climate Change, (November).

Pang, K., Van Sambeek, J. W., Navarrete-Tindal, N. E., Lin, C. Shibu, J. & Garret, H. E. (2017). Responses of legumes and grasses to non- , moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agroforestry Systems. 98, 25-38.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. 1ª ed. Santa Maria, RS: UFSM, NTE. ISBN 978-85-8341-204-5

Peri, P. L., Dube, F. & Varella, A. C. (2016). Silvopastoral Systems in Southern South America. In: Silvopastoral Systems in the Subtropical and Zones of South America: An Overview. Advances in agroforestry. v. 11. Springer, Cham. doi.org/10.1007/978-3-319-24109-8_1

Peri, P. L, Lucas R. J. & Moot, D. J. (2017). Dry matter production morphology and nutritive value of Dactylis glomerata growing under different light regimes. Agroforestry Systems, 70, 63–79. doi.org/10.1007/s10457-007-9029-x

Peri, P. L., Banegas, N., Gasparri, I., Carranza, C. H., Rossner, B. Pastur, G. J. M., Cavallero, L. Lopez, D. R., Loto, D., Fernandez, P. D., Powell, P. A., Ledesma, M., Pedraza, R., Albanesi, A., Bahamonde, H. A., Eclesia, R. & Piñeiro, G. (2018). Carbon Sequestration in Temperate Silvopastoral Systems, Argentina. In: Montagnini F. (eds) Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty. Advances in Agroforestry, vol 12. Springer, Cham. doi.org/10.1007/978-3-319-69371-2_19

Piacentini, V. Q., Aleixo, A., Agne, C. E., Maurício, G. N., Pacheco, J. F., Bravo, G. A., Brito, G.R. R., Naka, L. N., Olmos, F., Posso, S., Silveira, L. F., Betini, G. S., Carrano, E., Franz, I., Less, A. C., Lima, L. M., Pioli, D., Schucnk, F. Amaral, F. R., Bencke, G. A., Cohn-Haft, M., Figueiredo, L. F. A., Straube, F. C. & Cesari, E. (2015). Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee/Lista comentada das aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos. Revista Brasileira de Ornitologia, 23(2), 91–298.

Pinheiro-Machado, L. C. (2010). Pastoreio racional Voisin: tecnologia agroecológica para o terceiro milênio. Expressão Popular, 3 (19).

Plevich, J. O., Gyenge, J., Delgado, A. S., Tarico, J. C., Fiandino, S. & Utello, M. J. (2019). Production of Fodder in a Treeless System and in Silvopastoral System in Central Argentina. Floresta e Ambiente, 26(1), 1–12.

Salomão, P. E. A., Barbosa, L. C. & Cordeiro, I. J. M. (2020). Recuperação de áreas degradadas por pastagem: uma breve revisão. Research Society and Development, v. 9, n. 2, doi: http://dx.doi.org/10.33448/srd-v9i2.2057

Santos, D. C., Guimarães J. R., Vilela, L., Pulrolnik, K., Bufon, V. B., & França, A. F. S. (2016). Forage dry mass accumulation and structural characteristics of Piatã grass in silvopastoral systems in the Brazilian savannah. Agriculture, Ecosystems & Environment. 233, 16–24. doi:10.1016/j.agee.2016.08.026

Sarabia, L., Solorio, F. J., Ramírez, L., Ayala, A., Aguilar, C., Ku, J. Almeida, C., Cassador, R., Alves, B. J. & Bodydei, R. M. (2020) Improving the Nitrogen Cycling in Livestock Systems Through Silvopastoral Systems. In Meena R. (eds) Nutrient Dynamics for Sustainable Crop Production. p. 189-213. Springer, Singapore. doi.org/10.1007/978-981-13-8660-2_7

Paciullo, D. S. C., Castro, C. R. T., Gomide, C. A. M., Fernandes, P. B., Rocha, W. S. D., Muller, M. D. & Rossiello, R. O. P. (2010). Soil bulk density and biomass partitioning of Brachiaria decumbens in a silvopastoral system. Scientia Agricola, 67 , 598–603. doi.org/10.1590/S0103-90162010000500014

Schmitt Filho A. L, Farley, J., Alvez, J., et al (2013) Integrating agroecology with payments for ecosystems services in Santa Catarina’s Atlantic Forest. In: Muradian R, Rival L (eds) Governing the Provision of Ecosystems Services, Studies in Ecological Economics, 4th ed. Springer Netherlands: Dordrecht, Burlington, 333–355.

Schmitt Filho, A.L., Fantini, A., Sinisgalli, P., Farley. J., Schmitt, L.M. (2018) Ecological restoration, livelihood, and ecosystem services in a smallholder dominated the rural landscape. Proceedings of 2018 Conference of New England Branch of Society for Ecological Restoration /SER NE, Southern CT State University, New Haven CT USA.

Schmitt , A. L, Fantini, A.C, Farley, J., Sinisgalli, P. (2017) Nucleation theory inspiring the design of High Biodiversity Silvopastoral System in the Atlantic Forest Biome: ecological restoration, family farm livelihood and agroecology. Anais do VII World Conference on Ecological Restoration - SER 2017, I Conferência Brasileira de Restauração Ecológica. Foz do Iguaçu Brasil.

Schmitt Filho, A. L., Farley, J. (2020) Transdisciplinary case approaches to the ecological restoration of rainforest ecosystems. In: Felix Fuders and Pablo Donoso (Eds.), Ecological economic and socio-ecological strategies for forest conservation: A transdisciplinary approach with special focus on Chile and Brazil. Springer International Publishing AG. Zug Switzerland. ISBN 978-3-030-35378-0. eB ISBN 978-3-030-35379-7.

Schröter, B., Matzdorf, B., Sattler, C. & Alarcon, G. G. (2015) Intermediaries to foster the implementation of innovative land management practice for ecosystem service provision: A new role for researchers. Ecosystem Services. 16:192–200. doi.org/10.1016/j.ecoser.2015.10.007

Silva, A. S., Schmitt Filho, A. L., Fantini, A. C., Zambiazi, D. C. & Sinisgalli, P. A. (2017). Estimativa de biomassa e carbono em sistema silvipastoril com núcleos arbóreos (PRVnúcleos). VI Congresso Latino-americano, X Congresso Brasileiro e V Seminário do Distrito Federal e Entorno. 12 – 15 Setembro 2017. Brasília – DF, Brasil.

Silva, R. O., Barioni, L. G., Barioni,, L. G., Hall, J. A. J., Moretti, A. C., Veloso, R. F., Alexander, P., Crespolini, M. & Moran, D. (2017). Sustainable intensification of Brazilian livestock production through optimized pasture restoration. Agricultural Systems, v. 153, p. 201–211. doi.org/10.1016/j.agsy.2017.02.001

Simioni, G. F. (2019). Visualização de Variação da assembleia de aves em áreas pastoris e remanescentes florestais adjacentes. Tese Doutorado em Agroecossistemas. Universidade Federal de Santa Catarina.

Solorio, S. F. J., Wright, J., Franco, M. J. A., Basu, S. K., Sarabia, S. L., Ramírez, L., Ayala, B. A., Aguilar, P. C. & Ku, V. J. C. (2016). Silvopastoral Systems: Best Agroecological Practice for Resilient Production Systems Under Dryland and Drought Conditions. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer. p. 233-250. doi.org/10.1007/978-3-319-32059-5_11

Souza, J. P., Townsend, C. R., Araújo, S. R. C., & Oliveira, G. A. (2020). Características morfogênicas, estruturas e agronômicas de gramíneas tropicais: uma revisão. Research Society and Development, v. 9, n.8, doi: http://dx.doi.org/10.33448/srd-v9i8.6588

Tol, R. (2018). The Economics Impact of Climate Change. Environmental Economics and Policy, 12(1), 4–25.

Souza, M., Kuhenen, S., Kazama, D. C. S., Kurtz, C., Trapp, T., Muller, J., & Comin, J. J. (2017). Predição dos teores de compostos fenólicos e flavonoides na parte aérea das espécies Secale cereale L., Avena strigosa L., E Raphanus sativus L., por meio de espectroscopia no infravermelho próximo (NIR). Química Nova. v. 40, nº 9, 1074-1081. doi.org/10.21577/0100-4042.20170120

Wilm, H. G., Costello, D. F. & Klipple, G. E. (1944). Estimating Forage Yield by the Double-sampling Method. Agronomy Journal, 36, p. 119–203

Zhang, Y., Liao, X., Wang, Z., Wei, X., Jia, X. & Shao, M. (2020). Synchronous sequestration of organic carbon and nitrogen in mineral soils after conversion agricultural land to forest. Agriculture, Ecosystems & Environment, 295. doi.org/10.1016/j.agee.2020.106866

Published

26/09/2020

How to Cite

SILVA, A. de A. .; SCHMITT FILHO, A. L.; KAZAMA, D. C. da S. .; LOSS, A. .; SOUZA, M.; PICCOLO, M. de C.; FARLEY, J. .; SINISGALLI, P. A. de A. . Carbon and nitrogen stocks in the High Biodiversity Silvopastoral System: applied nucleation enabling low carbon livestock production . Research, Society and Development, [S. l.], v. 9, n. 10, p. e2799108589, 2020. DOI: 10.33448/rsd-v9i10.8589. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8589. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences