Morphophysiology and yield of green corn cultivated under different water depths and nitrogen doses in the cerrado conditions of Goiás, Brazil
DOI:
https://doi.org/10.33448/rsd-v9i10.8857Keywords:
Zea mays; Aover fertilization; Dripping; Gas exchange; AG-1051.Abstract
Corn is a cereal widely consumed worldwide, presenting high production demand. The productivity of green corn is linked to water and nitrogen availability, and knowledge of the interaction between these factors is essential to achieve the best crop yields depending on the edaphoclimatic conditions of a given region. In the present work, we investigated the impact of different water depths (50%, 75%, 100%, 125% of the water replacement of evapotranspiration) and nitrogen doses (0, 70, 140, 210 kg N ha-1), besides the interaction between these two factors on the morphophysiology and production of green corn cv. Agroceres 1051 grown in cerrado of Goiás, Brazil. The different water depths and nitrogen doses did not affect physiological parameters such as net photosynthesis, stomatal conductance, transpiration and fluorescence. Regarding the morphological and production parameters, 125% water depth application increased the length of the ear without straw (CESP), the number of karyopses per row (NCF), stem diameter, green mass of the plant without ear (MVPSE) and the weight of the ear with straw. Fertilization treatment of 210 kg ha-1 of nitrogen increased the length of the ear with and without straw (CECP and CESP), NCF, MVPSE, as well as the diameter and weight of the ear with straw (DECP and PECP). There was a positive correlation between the leaf area (AF) and the productivity parameters. The effectiveness of nitrogen fertilization was limited by water availability for the parameters AF, plant height, number of leaves and length and width of the ear insertion leaf.
References
Albuquerque, C. J. B., Pinho, R. G. V., Silva, R. da. (2008) Produtividade de Híbridos de Milho-Verde Experimentais e Comerciais. Journal of Bioscience, Uberlândia, 24(2), 69-76.
Albuquerque, P. E. P. de. (2010) Estratégias de Manejo de Irrigação: Exemplos de Cálculo. Embrapa Milho e Sorgo. Circular Técnica 136, Sete Lagoas.
Araújo, L. A. N., Ferreira, M. E., Cruz, M. C. P. (2004) Adubação Nitrogenada na Cultura do Milho. Pesquisa Agropecuária Brasileira, Brasília, 39(8), 771-777.
Arruda, M. R. de., Moreira, A., Pereira, J. C. R. (2014) Amostragem e Cuidados na Coleta de Solo Para Fins de Fertilidade. Embrapa Amazônia Ocidental. Documentos 115. 18 p. Manaus- AM.
Bardzik, J. M., Marsh, H. V., & Havis, J. R. (1971). Effects of water stress on the activities of three enzymes in maize seedlings. Plant physiology, 47(6), 828–831. doi.org/10.1104/pp.47.6.828
Bergamaschi, H. & Matzenauer, R. (2014) O milho e o clima. Porto Alegre: Emater/RS-Ascar, p. 11.
Bremner, J. M. (1995) Recent research on problems in the use of urea as a nitrogen fertilizer. In: Ahmad N. (eds) Nitrogen Economy in Tropical Soils. Developments in Plant and Soil Sciences, vol 69. Springer, Dordrecht. doi.org/10.1007/978-94-009-1706-4_30
Britto, D. T., Kronzucker, H. J. (2002) NH4+ Toxicity in higher plants: a critical review. Jornal of plant physiology. 159(6), p.567-584. doi.org/10.1078/0176-1617-0774
Christiansen, J. E. (1942) Irrigation by sprinkling. Berkeley: University of California. 124p.
Comissão De Fertilidade De Solos De Goiás (1988) Recomendações de Corretivos e Fertilizantes Para Goiás. 5ª Aproximação. Informativo Técnico, 1. UFG/EMGOPA. 101p. Goiânia-GO.
Conceição, M. A. F. (2001) Determinação da Evapotranspiração de Referencia com Base na Evaporação do Tanque Classe A na Região Noroeste de São Paulo. EMBRAPA Uva e Vinho. Comunicado Técnico 37. 4, Jales-SP.
Costa, F. R., Damaso, L. D., Mendes, R. C., Marques, D. D., Rodrigues, F. (2015) Desempenho de Híbridos de Milho para Consumo in natura em Diferentes Doses de Nitrogênio. Revista Científica, Jaboticabal-SP, 43(2), 109-116.
EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos (1999) Sistema Brasileiro de Classificação de Solos. Brasília: Embrapa Serviço de Produção de Informação; Rio de Janeiro: Embrapa Solos. 412p.
Farquhar, G. D., Sharkay, T. D. (1982) Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology 33, 317-345. doi.org/10.1146/annurev.pp.33.060182.001533
Fernandes, J. D., Chaves L. H. G., Monteiro Filho, A. F., Vasconcellos, A., Silva, J. R. P. da. (2017) Crescimento e Produtividade de Milho sob Influência de Parcelamento e Doses de Nitrogênio. Revista Espacios, 38(8).
Ferreira, D. F. (2011) Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, Lavras, 35(6), 1039-1042.
Foyer, C. H., Valadier, M. H., Migge, A., Becker, T. W. (1998) Drought-Induced Effects on Nitrate Reductase Activity and mRNA and on the Coordination of Nitrogen and Carbon Metabolism in Maize Leaves. Plant Physiol, 117, 283-292. doi.org/10.1104/pp.117.1.283
Freire, F. M., Viana, M. C. M., Mascarenhas, M. H. T., Pedrosa, M. W., Coelho, A. M., Andrade, C. de L. T. de. (2010) Produtividade Econômica e Componentes da Produção de Espigas Verdes de Milho em Função da Adubação Nitrogenada. Revista Brasileira de Milho e Sorgo, Teresina, 9(3), 213-222. doi.org/10.18512/1980-6477/rbms.v9n3p213-222
Hossain, F., Muthusamy, V., Bhat, J. S. K., Jha, S. K., Zunjare, R., Das, A. Sarika, K., Kumar, R. Maize. In: Singh, M.; Kumar, S. (2016) Broadening the Genetic Base of Grain Cereals, India.
Hsiao, T. C., Acevedo, E., Henderson, D. W. (1970) Maize Leaf Elongation: Continuous Measurements and Close Dependence on Plant Water Status. Science, 168(3931), 590-591.
Imran, S., Arif, M., Khan, A., Khan, M. A., Shah, W., Latif, A. (2015) Effect of Nitrogen Levels and Plant Population on Yield and Yield Components of Maize. Adv Crop Sci Tech., 3(2).
Jain, M., Kataria, S., Hirve. M., Prajapati, R. (2019) Water Deficit Stress Effects and Responses in Maize. In: Hasanuzzaman, M.; Hakeem, K.; Nahar, K.; Alharby H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham, p. 129-151. doi:10.1007/978-3-030-06118-0_5
Jalota, S. K., Singh, S., Chahal, G. B. S., Ray, S. S., Panigraghy, S., Singh, B., Singh, K.B. (2010) Soil Texture, Climate and Management Effects on Plant Growth, Grain Yield and Water Use by Rainfed Maize–Wheat Cropping System: Field And Simulation Study. Agricultural Water Management. 97(1), p.83–90. doi.org/10.1016/j.agwat.2009.08.012
Jasemi, M., Darab, F., Naser, R. (2013) Effect of Planting Date and Nitrogen Fertilizer Application on Grain Yield and Yield Components in Maize. American-Eurasian Journal Agriculture & Environmental Sciences, 13, 914-919.
Jin, X., Yang, G., Tan, C., Zhao, C. (2015) Effects of Nitrogen Stress on the Photosynthetic CO2 Assimilation, Chlorophyll Fluorescence and Sugar-Nitrogen Ratio in Corn. Scientific Reports, 5,(9311). doi.org/10.1038/srep09311
Kaiser, W. M. (1987) Effects of water deficit on photosynthetic capacity. Physiologia Plantarum 71(1), 142-149. doi.org/10.1111/j.1399-3054.1987.tb04631.x
Kross, A., Mcnairn, H., Lapen, D., Sunohara, M., Champagne, C. (2015) Assessment of Rapideye Vegetation Indices for Estimation of Leaf Areaindex and Biomass in Corn and Soybean Crops. International Journal of Applied Earth Observation and Geoinformation, 34, 235–248. doi.org/10.1016/j.jag.2014.08.002
Leghari, S. J., Wahocho, A. W., Laghari, G. M., Hafeezlaghari, A., Mustafabhabhan, G., Talpur, K. H., Bhutto, T. A., Wahocho, S. A., Lashari, A. A. (2016) Role of nitrogen for plant growth and development: a review. Advances in Environmental Biology, 10(9), 209.
Li, G., Zhao, B., Dong, S., Zhang, J., Liu, P., Vyn, T. J. (2017) Interactive Effects of Water and Controlled Release Urea on Nitrogen Metabolism, Accumulation, Translocation, and Yield in Summer Maize. The Science of Nature, 104, 9-10. doi.org/10.1007/s00114-017-1491-3
Liu, Z., Gao, J., Gao, F., Liu, P., Zhao, B., Zhang, J. (2018) Photosynthetic Characteristics and Chloroplast Ultrastructure of Summer Maize Response to Different Nitrogen Supplies. Front. Plant Sci., 9, 576. doi: 10.3389/fpls.2018.00576
Machado Filho, G. C., Nascimento, I. R., Sakai, T. R. P., Rocha, W. S., Santos, M. M. dos. (2018) °Brix e Produção de Espigas de Milho-verde em Função de Épocas de Adubação Nitrogenada. Pesquisa Aplicada & Agrotecnologia, Guarapuava-PR, 11(1), 33-41. doi: 10.5935/PAeT.V11.N1.04
Melo, W. M. C., Von Pinho, R. G., Von Pinho, E. V. R., Carvalho, M. L. M., Fonseca, A. H. (1999) Parcelamento da adubação nitrogenada sobre o desempenho de cultivares de milho para produção de silagem. Revista Ciência e Agrotecnologia, 23(3), 608-616.
Murphy, A. T., & Lewis, O. A. M. (1987) Effect of Nitrogen Feeding Source on the Supply of Nitrogen from Root to Shoot and the Site of Nitrogen Assimilation in Maize (Zea mays L. CV. R201). New Phytologist, v.107, p.327-333. doi.org/10.1111/j.1469-8137.1987.tb00184.x
Nascimento, F. N. do, Bastos, E. A., Cardoso, M. J., Andrade Júnior, A. S. de, & Ramos, H. M. (2017) Desempenho da Produtividade de Espigas de Milho-verde sob Diferentes Regimes Hídricos. Revista Brasileira de Milho e Sorgo, Teresina-PI, 16(1), 94-108. dx.doi.org/10.18512/1980-6477/rbms.v16n1p94-108
Nascimento, F. N. do, Bastos, E. A., Cardoso, M. J., Andrade Júnior, A. S. de, Ribeiro, V. Q. (2015) Parâmetros Fisiológicos e Produtividade de Espigas Verdes de Milho sob Diferentes Lâminas de Irrigação. Revista Brasileira de Milho e Sorgo, 14(2), 167-181. doi: https://doi.org/10.18512/1980-6477/rbms.v14n2p167-181
Neumann, M., Sandini, I. E., Lustosa, S. P. C., Ost, P. R., Romano, M. A., Falbo, M. K., Pansera, E. R. (2005) Rendimentos e Componentes de Produção da Planta de Milho (Zea mays L.) para Silagem, em Função de Níveis de Adubação Nitrogenada em Cobertura. Revista Brasileira de Milho e Sorgo, 4(3), 418-427. doi: 10.18512/1980-6477/rbms.v4n3p418-427
Perdomo, A. J., Carmo-Silva, E., Hermida-Carrera, C., Flexas, J., Galmés, J. (2016) Acclimation of Biochemical and Diffusive Components of Photosynthesis in Rice, Wheat, and Maize to Heat and Water Deficit: Implications for Modeling Photosynthesis. Front Plant Sci., 7, 1719. doi: 10.3389/fpls.2016.01719
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria, RS: UFSM, NTE. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Pereira Filho, I. A. (2002) O Cultivo do Milho-verde. Sete Lagoas-MG: Embrapa Milho e Sorgo. 217p.
Portes, T. A., & Melo, H. C. de. (2014) Light Interception, Leaf Area and Biomass Production as a Function of The Density of Maize Plants Analyzed Using Mathematical Models. Acta Sci., Agron., Maringá-PR, 36(4). doi.org/10.4025/actasciagron.v36i4.17892
Sangoi, L., Schmitt, A., Zanin, C. G. (2007) Área Foliar e Rendimento de Grãos de Híbridos de Milho em Diferentes Populações de Plantas. Revista Brasileira de Milho e Sorgo, 6(3), 263-271. doi.org/10.18512/1980-6477/rbms.v6n03p%25p
Shrinivasan, V., Kumar, P., Long, S. P. (2017) Decreasing, not Increasing, Leaf Area will Raise Crop Yields under Global Atmospheric Change. Global Change Biology, 23(4), 1626–1635. doi.org/10.1111/gcb.13526
Silva, C. B., Silva, T., Silva, J. C., Cruz, R., Alves, M. C., Santos, M. A. (2017) Trocas Gasosas do Milho Verde Submetido a Diferentes Lâminas de Irrigação e Doses de Nitrogênio. IV Inovagri International Meeting. XXVII Congresso Nacional de Irrigação e Drenagem (CONIRD). III Simpósio Latino-Americano de Salinidade (SBS). 8p. doi: 10.7127/iv-inovagri-meeting-2017-res3790594
Silva, C. D. S., Santos, P. A. A., Lira, J. M. S., Santana, M. C., Silva Júnior, C. D. (2010) Curso diário das trocas gasosas em plantas de feijão-caupi submetidas à deficiência hídrica. Revista Caatinga, 23(4), 7-13.
Sousa, Í. M. de, Rocha, D. R. da, Cunha, C. S. M., Gonçalves, I. C. R., Castro, J. I. A. (2017) Adubação Nitrogenada e Modos de Disponibilização de Micronutrientes na Produção de Milho-verde. Revista Agropecuária Científica no Semiárido, Patos-PB, 13(1), 15-21. dx.doi.org/10.30969/acsa.v13i1.762
Stewart, D. W., Costa, C., Dwyer, L. M., Smith, D. L., Hamilton, R. I. & Ma, B. L. (2003), Canopy Structure, Light Interception, and Photosynthesis in Maize. Agronomy Journal, 95(6) 1465-1474. doi:10.2134/agronj2003.1465
Tolk, J. A., Howell, T. A., Evett, S. R. (1999) Effect of Mulch, Irrigation, and Soil Type on Water Use and Yield of Maize. Soil & Tillage Research, 50(2), 137-147. doi.org/10.1016/S0167-1987(99)00011-2
Tóth, V. R., Mészáros, M., Veres, S., Nagy, J. (2002) Effects of the Available Nitrogen on the Photosynthetic Activity and Xanthophyll Cycle Pool of Maize in Field. Journal of Plant Physiology, 159(6), 627–634. doi.org/10.1078/0176-1617-0640
Wang, Y., Janz, B., Engedal, T., Neergaard, A. de. (2017) Effect of Irrigation Regimes and Nitrogen Rates on Water Use Efficiency and Nitrogen Uptake in Maize. Agricultural Water Management, 179, 271–276. doi.org/10.1016/j.agwat.2016.06.007
Xu, L., Niu, J., Li, C., Zhang, F. (2009) Growth, Nitrogen Uptake and Flow in Maize Plants Affected by Root Growth Restriction. Journal of Integrative Plant Biology, 51(7), 689–697. doi: 10.1111/j.1744-7909.2009.00843.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Eliaby José de Oliveira; Hyrandir Cabral de Melo; Frederico Rocha Rodrigues Alves ; Aniela Pilar Campos de Melo; Kênia Lorrany Trindade; Thâmara de Mendonça Guedes; Cleiton Mateus Sousa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.