Corrosion behavior and antimicrobial activity of titanium and Ti-30Ta alloy




Titanium; Ti-30Ta alloy; Corrosion behavior.


The global market of dental implants is expecting to make USD 13.01 billion circulate by 2023 from USD 9.50 billion in 2018. The study of the materials to fabrication the implants has increased with the objective of extending the useful life of the material avoiding having to replace. Therefore, in this study we investigated the electrochemical behavior, wettability characterization and antimicrobial activity of titanium and the Ti-30Ta binary alloy. The titanium was cut into discs of 10 mm in diameter. The Ti-30Ta alloy was obtained from titanium and tantalum pure metals in a high purity argon atmosphere, homogenized in a vacuum at 1000ºC for 24 hours, cold -worked by a rotary swaging process and solubilized at 950 ºC for 2 hours followed by water cooling. Then, the bars were cut into discs. Corrosion resistance tests evaluated the electrochemical behavior, the wettability of the substrate surfaces was investigated using a sessile drop method and the biofilm formation was investigated by of S epidermidis. This study aims to investigate the corrosion resistance of Ti cp and the Ti-30Ta alloy at electrolyte solution NaCl 0,15M + NaF 0,03M and tested biofilm formation. From the results obtained, we concluded that the electrochemical behavior of both surfaces shows good resistance to corrosion solution and hydrophilic (< 90 °) behavior. However, the Ti-30Ta alloy decreases the adhesion of S epidermidis bacteria.


Abdeen, D. H., El Hachach, M., Koc, M., & Atieh, M. A. (2019, January). A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials. MDPI AG.

Brånemark, R., Öhrnell, L. O., Nilsson, P., & Thomsen, P. (1997). Biomechanical characterization of osseointegration during healing: An experimental in vivo study in the rat. Biomaterials, 18(14), 969–978.

Brinemark, P., Engstrand, P., Ohmell, L., & Grondahl, K. (1999). Branemak Novum: A new concept for Rehabilitation of the Edentulous Mandible. Preliminary Results from a Prospective Clinical. Clinical Implant Dentistry and Related Research.

Capellato, P., Smith, B. S., Popat, K. C., & Alves Claro, A. P. R. (2015). Cellular functionality on nanotubes of Ti-30Ta alloy. Materials Science Forum (Vol. 805).

Capellato, P., Smith, B. S., Popat, K. C., & Claro, A. P. R. A. (2012). Fibroblast functionality on novel Ti30Ta nanotube array. Materials Science and Engineering C, 32(7).

Capellato, P., Escada, A. L. A. A. L. A., Popat, K. C. K. C., & Claro, A. P. R. A. A. P. R. A. (2014). Interaction between mesenchymal stem cells and Ti-30Ta alloy after surface treatment. Journal of Biomedical Materials Research - Part A, 102(7), 2147–2156.

Capellato, P., Riedel, N. A., Williams, J. D., Machado, J. P. B., Popat, K. C., & Claro, A. P. R. A. (2013). Surface Modification on Ti-30Ta Alloy for Biomedical Application. Engineering, 05(09), 707–713.

Capellato, P., Silva, G., Popat, K., Simon‐Walker, R., Alves Claro, A. P., & Zavaglia, C. (2020). Cell investigation of Adult Human dermal fibroblasts on PCL nanofibers/TiO 2 nanotubes Ti‐30Ta alloy for biomedical application. Artificial Organs, aor.13713.

Souza, K. A., & Robin, A. (2003). Preparation and characterization of Ti-Ta alloys for application in corrosive media. Materials Letters, 57(20), 3010–3016.

Dental Implants Market Size & Share - Global Forecast to 2023 | Growing at a CAGR of 6.5% | MarketsandMarkets.

Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science, 54(3), 397–425.

Gill, P., Munroe, N., Pulletikurthi, C., Pandya, S., Haider, W. (2011). Effect of Manufacturing Process on the Biocompatibility and Mechanical Properties of Ti-30Ta Alloy. J. of Materi Eng and Perform 20, 819–823.

Jiang, X., Yao, Y., Tang, W., Han, D., Zhang, L., Zhao, K., … Meng, Y. (2020). Design of dental implants at materials level: An overview. Journal of Biomedical Materials Research - Part A. John Wiley and Sons Inc.

Kashi, A., & Saha, S. (2010). 12 - Mechanisms of failure of medical implants during long-term use A2 - Sharma, Chandra P. BT - Biointegration of Medical Implant Materials. Woodhead Publishing Series in Biomaterials, (January), 326–348.

Kaur, M., & Singh, K. (2019). Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C, 102, 844–862.

Kulkarni, M., Mazare, A., Gongadze, E., Perutkova, Kralj-Iglic, V., Milošev, I., … Mozetič, M. (2015). Titanium nanostructures for biomedical applications. Nanotechnology, 26(6).

Malhotra, R., Dhawan, B., Garg, B., Shankar, V., & Nag, T. C. (2019). A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: An In vitro study. Indian journal of orthopaedics, 53(1), 148.

Manam, N. S., Harun, W. S. W., Shri, D. N. A., Ghani, S. A. C., Kurniawan, T., Ismail, M. H., & Ibrahim, M. H. I. (2017). Study of corrosion in biocompatible metals for implants: A review. Journal of Alloys and Compounds, 701, 698–715.

Mareci, D., Chelariu, R., Gordin, D. M., Ungureanu, G., & Gloriant, T. (2009). Comparative corrosion study of Ti-Ta alloys for dental applications. Acta Biomaterialia, 5(9), 3625–3639.

Mendis, S., Xu, W., Tang, H. P., Jones, L. A., Liang, D., Thompson, R., … Qian, M. (2020). Characteristics of oxide films on Ti-(10–75)Ta alloys and their corrosion performance in an aerated Hank’s balanced salt solution. Applied Surface Science, 506(December 2019).

Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1), 231–236.

Pandey, A., Awasthi, A., & Saxena, K. K. (2020). Metallic implants with properties and latest production techniques: a review. Advances in Materials and Processing Technologies, 1–36.

Verma, R. P. (2020). Materials Today : Proceedings Titanium based biomaterial for bone implants : A mini review. Materials Today: Proceedings, (xxxx), 2–5.

Zhou, Y. L., & Niinomi, M. (2008). Microstructures and mechanical properties of Ti-50 mass% Ta alloy for biomedical applications. Journal of Alloys and Compounds, 466(1–2), 535–542.

Zhou, Y. L., Niinomi, M., & Akahori, T. (2004). Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications. Materials Science and Engineering A, 371(1–2), 283–290.

Zhou, Y. L., Niinomi, M., Akahori, T., Fukui, H., & Toda, H. (2005). Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications. Materials Science and Engineering A, 398(1–2), 28–36.

Zimmerli, W., & Sendi, P. (2011). Pathogenesis of implant-associated infection: the role of the host. In Seminars in immunopathology, 33(3), 295-306. Springer-Verlag.




How to Cite

Capellato, P., Novakoski, M. da S. ., Vasconcelos, L. V. B. ., Ribeiro, T. A. N. ., Melo, M. de L. N. M. ., Silva, G., Nakazato, R. Z. ., Ranieri, M. G. A. ., Claro, A. P. R. A. ., & Sachs, D. (2020). Corrosion behavior and antimicrobial activity of titanium and Ti-30Ta alloy. Research, Society and Development, 9(11), e1709119361.



Exact and Earth Sciences