Terapias antivirais anti-HCV como alternativa para tratamento da Covid-19
DOI:
https://doi.org/10.33448/rsd-v9i10.9406Palavras-chave:
Sars-cov-2; Vírus da hepatite c; Antivirais; Tratamento.Resumo
A atual pandemia causada pelo vírus da síndrome respiratória aguda grave 2 (SARS-CoV-2) se propagou mundialmente de forma alarmante em uma velocidade significativamente mais rápida do que os surtos anteriores causados por coronaviroses. Devido à falta de uma vacina no momento, uma precoce intervenção antiviral pode impedir a propagação da doença em todo o mundo e melhorar os resultados clínicos dos pacientes infectados. O vírus SARS-CoV-2 e o vírus da Hepatite C (HCV) possuem estrutura, replicação e mecanismos catalíticos semelhantes, portanto, vários estudos consideraram o potencial de atividade antiviral de medicamentos anti-HCV como o remdesivir, simeprevir, sofosbuvir e daclatasvir contra SARS-CoV-2. Diante disso, o presente trabalho, tem como objetivo avaliar e discutir sobre os antivirais já disponíveis contra o HCV que também demonstraram ser potenciais inibidores da replicação do SARS-CoV-2. O estudo baseou-se em uma revisão bibliográfica, de natureza qualitativa e, do tipo exploratório. Os estudos com medicamentos anti-HCV são promissores e já são considerados para iniciar ensaios clínicos em pacientes infectados com o novo coronavírus, tendo sido observados como inibidores da replicação viral do SARS-CoV-2. Assim, o presente estudo traz uma revisão farmaco-clínica sobre os antivirais remdesivir, simeprevir, sofosbuvir e daclatasvir, considerando os principais estudos realizados até o momento no tratamento para Covid-19.
Referências
Agostini, M. L., Andres, E. L., Sims, A. C., Graham, R. L., et al., (2018). Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio, 9(2). Doi: 10.1128/mbio.00221-18
Alamri, M. A., Tahir ul Qamar, M., Mirza, M. U., Bhadane, R., et al., (2020). Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CLpro. Journal of Biomolecular Structure and Dynamics, 1–13. Doi: 10.1080/07391102.2020.1782768
Asadi-Pooya, A. A., & Simani, L. (2020). Central nervous system manifestations of COVID-19: A systematic review. Journal of the Neurological Sciences, 116832. Doi:10.1016/j.jns.2020.116832
Bryan-Marrugo, O. L., Ramos-Jiménez, J., Barrera-Saldaña, H., Rojas-Martínez, A., Vidaltamayo, R., & Rivas-Estilla, A. M. (2015). History and progress of antiviral drugs: From acyclovir to direct-acting antiviral agents (DAAs) for Hepatitis C. Medicina Universitaria, 17(68), 165–174. Doi: 10.1016/j.rmu.2015.05.003
Brown, A. J., Won, J. J., Graham, R. L., Dinnon, K. H., et al., (2019) Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral research 169, 104541. Doi: 10.1016/j.antiviral.2019.104541
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., et al., (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, The Lancet. 395 (10223), 507–513. Doi: 10.1016/S0140-6736(20)30211-7
Chen, Y. W., Yiu, C-P. B., & Wong, K-Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9:129. Doi: 10.12688/f1000research.22457.2
Chien, M., Anderson, T. K., Jockusch, S., Tao, C., et al., (2020). Nucleotide Analogues as Inhibitors of SARS-CoV-2 Polymerase, a Key Drug Target for COVID-19. Journal of Proteome Research. Doi: 10.1021/acs.jproteome.0c00392
Deng, C. X. (2020). The global battle against SARS-CoV-2 and COVID-19. International journal of biological sciences, 16(10), 1676. Doi: 10.7150/ijbs.45587
De Clercq, E., & Li, G. (2016). Approved Antiviral Drugs over the Past 50 Years. Clinical Microbiology Reviews, 29(3), 695–747. Doi: 10.1128/cmr.00102-15
Dustin, L. B., Bartolini, B., Capobianchi, M. R., & Pistello, M. (2016). Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin. Microbiol. Infect, 22, 826–832. Doi: 10.1016/j.cmi.2016.08.025
Elfiky, A. A. (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 117592. Doi:10.1016/j.lfs.2020.117592
Gandhi, Y., Eley, T., Fura, A., Li, W., et al., (2018). Daclatasvir: A Review of Preclinical and Clinical Pharmacokinetics. Clinical Pharmacokinetics, 57(8), 911–928. Doi:10.1007/s40262-017-0624-3
Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., et al., (2020). A SARS-CoV-2 protein
interaction map reveals targets for drug repurposing. Nature. Doi: 10.1038/s41586-020-2286-9
Gordon, C. J., Tchesnokov, E. P., Woolner, E., Perry, J. K., et al., (2020). Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry, 013679. Doi: 10.1074/jbc.ra120.013679
Gordon, C. J., Tchesnokov, E. P., Feng, J. Y., Porter, D. P., & Gotte, M. (2020). The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry, 013056. Doi:10.1074/jbc.ac120.013056
Hui, D. S., I Azhar, E., Madani, T. A., Ntoumi, F., et al., (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases, 91, 264–266. Doi:10.1016/j.ijid.2020.01.009
Hui, D. S. C. & Zumla, A. (2019). Severe acute respiratory syndrome: historical, epidemiological and clinical features. Infect. Dis. Clin. N. Am. 33, 869–889. Doi: 10.1016/j.idc.2019.07.001
Hosseini, F. S., & Amanlou, M. (2020). Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study. Life Sciences, 118205. Doi: 10.1016/j.lfs.2020.118205
Ju, J., Kumar, S., Li, X., Jockusch, S., & Russo, J. J. (2020). Nucleotide Analogues as Inhibitors of Viral Polymerases. bioRxiv, 927-574. Doi: 10.1101/2020.01.30.927574
Keating, G. M. (2016). Daclatasvir: A Review in Chronic Hepatitis C. Drugs, 76(14), 1381–1391. doi:10.1007/s40265-016-0632-x
Keating, G. M. (2014). Sofosbuvir: A Review of its Use in Patients with Chronic Hepatitis C. Drugs, 74(10), 1127–1146. Doi: 10.1007/s40265-014-0247-z
Li, H., Zhou, Y., Zhang, M., Wang, H., et al., (2020) Updated approaches against SARS-CoV-2. Antimicrobial agents and chemotherapy, 64(6). Doi: 10.1128/AAC.00483-20
Liu, J., Cao, R., Xu, M., Wang, X., et al., (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6(1). Doi:10.1038/s41421-020-0156-0
Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 14(1):69–71. Doi: 10.5582/bst.2020.01020.
Lu, R., Zhao, X., Li, J., Niu, P., et al., (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for irus origins and receptor binding. Lancet, 395, 565-574. Doi: 10.1016/S0140-6736(20)30251
Lurie, N., Saville, M., Hatchett, R., & Halton, J. (2020). Developing Covid-19 vaccines at pandemic speed. New England Journal of Medicine, 382(21), 1969-1973. Doi: 10.1056/NEJMp2005630
Lo, H. S., Hui, K. P., Lai, H. M., Khan, K. S., et al., (2020). Simeprevir suppresses SARS-CoV-2 replication and synergizes with remdesivir. bioRxiv. Doi: 10.1101/2020.05.26.116020
Lotfi, M., Hamblin, M. R., & Rezaei, N. (2020). COVID-19: Transmission, Prevention, and Potential Therapeutic Opportunities. Clinica Chimica Acta. Doi:10.1016/j.cca.2020.05.044
Mesci, P., Macia, A., Saleh, A., Martin-Sancho, L., et al., (2020). Sofosbuvir protects human brain organoids against SARS-CoV-2. bioRxiv. 125-856. Doi: 10.1101/2020.05.30.125856
Pereira, A. S, Shitsuka, D. M, Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Accessed on August 19, at https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Rosenquist, Å., Samuelsson, B., Johansson, P.-O., Cummings, M. D., et al., (2014). Discovery and Development of Simeprevir (TMC435), a HCV NS3/4A Protease Inhibitor. Journal of Medicinal Chemistry, 57(5), 1673–1693. Doi: 10.1021/jm401507s
Sacramento, C. Q., Rodrigues, N. F., Temerozo, J. R., Dias, S., et al., (2020). The in vitro antiviral activity of the anti-hepatitis C virus (HCV) drugs daclatasvir and sofosbuvir against SARS-CoV-2. bioRxiv. Doi: 10.1101/2020.06.15.153411
Sheahan, T. P., Sims, A. C., Leist, S. R., Schafer, A., et al., (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature communications 11, 222. Doi: 10.1038/s41467-019-13940-6
Siegel, D., Hui, H. C., Doerffler, E., Clarke, M. O., et al., (2017). Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses. J Med Chem. 60(5):1648–61. Doi: 10.1021/acs.jmedchem.6b01594.
Smith, M. A., Regal, R. E., & Mohammad, R. A. (2015). Daclatasvir. Annals of Pharmacotherapy, 50(1), 39–46. Doi:10.1177/1060028015610342
Tchesnokov, E., Feng, J., Porter, D., & Götte, M. (2019). Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses, 11(4), 326. Doi:10.3390/v11040326
Verbinnen, T., Fevery, B., Vijgen, L., Jacobs, T., De Meyer, S., & Lenz, O. (2015). In VitroActivity of Simeprevir against Hepatitis C Virus Genotype 1 Clinical Isolates and Its Correlation with NS3 Sequence and Site-Directed Mutants. Antimicrobial Agents and Chemotherapy, 59(12), 7548–7557. Doi:10.1128/aac.01444-15
Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. Journal of Virology. Doi:10.1128/jvi.00127-20
Wang, Y., Zhang, D., Du, G., Du, R., et al., (2020). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 395(10236), 1569-78. Doi: 10.1016/S0140-6736(20)31022-9.
Wang, M., Cao, R., Zhang, L., Yang, X., et al., (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research; 30: 269-71. Doi: 10.1038/s41422-020-0282-0
Wu, R., Wang, L., Kuo, H.-C. D., Shannar, A., Peter, R., Chou, P. J., …, & Kong, A.-N. (2020). An Update on Current Therapeutic Drugs Treating COVID-19. Current Pharmacology Reports 6, 56–70. Doi: 10.1007/s40495-020-00216-7
Zumla, A.; Chan, J. F. W.; Azhar, E. I.; Hui, D. S. C, & Yuen, K. Y. (2016). Coronaviruses – drug discovery and therapeutic options. Nat. Rev. | Drug Discovery, 15, 327-347. Doi: 10.1038/nrd.2015.37
Zhou, P.; Yang, X.; Wang, X.; Hu, B., & Zhang, L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579: 270-273. Doi: 10.1038/s41586-020-2012-7
Zhou, N.; Zhang, D.; Wang, W.; Li, X., & Yang, B. (2020). Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl J. Med. 382;8. Doi: 10.1056/NEJMoa2001017
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Giuliene Rocha de Medeiros; Isabela Cristina Cordeiro Farias ; João Victor Cordeiro Farias; Penelopy Rodrigues de Macedo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.