Biological activity of geopropolis produced by Partamona cupira (Meliponinae, Apidae) in the semiarid of the Brazilian northeast

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9644

Keywords:

Meliponinae; Geopropolis; Chemical composition; Antioxidant activity; Genoprotective potential; Healing effect.

Abstract

Research on the chemical composition and pharmacological activities of geopropolis produced by stingless bees (Hymenoptera, Apidae, Meliponini) may contribute to expand its use of propolis-based formulations in the clinical context. Thus he study aimed to evaluate the chemical composition and biological activity of the hydroethanolic extract (HEG) of the geopropolis of Partamona cupira, obtained in the semiarid region of northeast Brazil. Chemical analyses of HEG were carried out using HPLC-DADESI-MS/MS. The antioxidant activity of extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay method and cytotoxic activity by the in vitro MTT method [brometo de 3- (4.5dimetiltiazol-2-il)-2.5-difeniltetrazolio]. The antibacterial activity of the HEG was evaluated through the disc-diffusion test on agar and measurement of the promoted by the extract in different concentrations. The genoprotective potential of the HEG was evaluated through the comet assay on fibroblasts of L929, co-treated with the extract and submitted to genotoxicity induction with H2O2. We also investigated the healing effect of the cream containing geopropolis (10%) on experimental skin wounds in Wistar rats. The HEG presented in its composition phenolic compounds of high biological activity, as well as revealed high antioxidant activity and promoted genoprotective effect by reducing DNA damage from L929 fibroblasts. The HEG presented antimicrobial activity promoting inhibition of S. aureus, S. pyogenes, E. coli and E. aerogenes. The topical use of the cream containing geopropolis promoted wound closure and faster reepithelialization in relation to the control group, in addition to a less intense inflammatory reaction, increased fibroblastic proliferation and collagen deposition.

References

Akkol, E. K., Göger, F., Koşar, M., & Başer, K. H. C. (2008). Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chemistry, 108(3), 942-949.

https://doi.org/10.1016/j.foodchem.2007.11.071

Avery, D., Govindaraju, P., Jacob, M., Todd, L., Monslow, J., & Puré, E. (2018). Extracellular matrix directs phenotypic heterogeneity of activated fibroblasts. Matrix Biology, 67, 90-106. https://doi.org/10.1016/j.matbio.2017.12.003

Camargo, J. M. F. (1980). O grupo Partamona (Partamona) testacea (Klug): suas espécies, distribuição e diferenciação geográfica (Meliponinae, Apidae, Hymenoptera). Acta Amazonica, 10(4), 5-175.

https://doi.org/10.1590/1809-43921980104s005

Campêlo, M. C. S., Freire, D. A. C., Abrantes, M. R., Sousa, Ê. S., & Silva, J. B. A. (2015). Potencial antimicrobiano de própolis e cera de diferentes espécies de abelhas sem ferrão. Acta Veterinaria Brasilica, 9(4), 397-400.

https://doi.org/10.21708/avb.2015.9.4.5406

Campos, J. F., Santos, U. P., Macorini, L. F. B., Melo, A. M. M. F., Balestieri, J. B. P., Paredes-Gamero, E. J., Cardoso, C. A. L., Souza, K. P., & Santos, E. L. (2014). Antimicrobial, antioxidant and cytotoxic activities of propolis from Melipona orbignyi (Hymenoptera, Apidae). Food and Chemical Toxicology, 65, 374-380. https://doi.org/10.1016/j.fct.2014.01.008.

Carvalho, A. F., Silva, D. M., Silva, T. R. C., Scarcelli, E., & Manhani, M. R. (2014). Avaliação da atividade antibacteriana de extratos etanólico e de ciclohexano a partir das flores de camomila (Matricaria chamomilla L.). Revista Brasileira de Plantas Medicinais, 16(3), 521-26.

https://doi.org/10.1590/1983-084X/12_159

Ferreira, I. C. F. R., Jabeur, I., Martins, N., Barros, L., Calhelha, R. C., Vaz, J., Achour, L., & Santos-Buelga, C. (2017). Phenolic profile obtained by HPLC-DAD-ESI/MS and in vitro bioactivities of Equisetum giganteum L. and Tilia platyphyllos Scop. Bragança. 10º Encontro Nacional de Cromatografia: livro de resumos. Retrieved from https://bibliotecadigital.ipb.pt/handle/10198/14807

Ferreira, J. M., Fernandes-Silva, C. C., Salatino, A., & Negri, G. (2017). Antioxidant activity of a geopropolis from northeast Brazil: chemical characterization and likely botanical origin. Evidence-Based Complementary and Alternative Medicine. 1-6. https://doi.org/10.1155/2017/4024721

Franchin, M., Cunha, M. G., Denny, C., Napimoga, M. H., Cunha, T. M., Koo, H., Alencar, S. M., Ikegaki M., & Rosalena, P. L. (2012). Geopropolis from Melipona scutellaris decreases the mechanical inflammatory hypernociception by inhibiting the production of IL-1β and TNF-α. Journal of Ethnopharmacology, 143(2), 709-715.

https://doi.org/10.1016/j.jep.2012.07.040

Guimarães, D. O., Momesso, L. S., & Pupo, M. T. (2010). Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Química Nova, 33(3), 667-679.

https://doi.org/10.1590/S0100-40422010000300035

Hrncir, M., Koeda, D., & Fonseca, V. L. I. (2017). A abelha jandaíra: no passado, presente e no futuro. Mossoró: Editora Universitária (EdUFERSA).

Iso. Pnen. 10993–5 (2009). Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva.

Kapoor, M., & Appleton, I. (2005). Wound healing: Abnormalities and future therapeutic targets. Current Anaesthesia & Critical Care, 16(2), 88-93. https://doi.org/10.1016/j.cacc.2005.03.005

Lavinas, F. C., Macedo, E. H. B., Sá, G. B., Amaral, A. C. F., Silva, J. R., Azevedo, M., & Rodrigues, I. A. (2019). Brazilian stingless bee propolis and geopropolis: promising sources of biologically active compounds. Revista Brasileira de Farmacognosia, 29(3), 389-399. http://dx.doi.org/10.1016/j.bjp.2018.11.007

Lima-Verde, L. W., Felix, J. A., & Freitas, B. M. (2019). Aspectos da Meliponicultura no Estado do Ceará. Mensagem Doce (Associação Paulista De Apicultores, Criadores De Abelhas Melificas Européias), 151, 04-06.

http://apacame.org.br/site/revista/mensagem-doce-n-151-maio-de-2019/artigo-2/

Lovell, D. P., Thomas, G., & Dubow, R. (1999). Issue related to the experimental design and subsequent statistical analysis of in vivo and in vitro comet assay. Teratogenesis, Carcinogenesis, and Mutagenesis, 19(2), 109-119.

https://doi.org/10.1002/(SICI)1520-6866(1999)19:2<109::AID-TCM4>3.0.CO;2-5

Manivannan, R. (2016). Isolation of apigenin-7-O-(6’’-OE-caffeoyl)-β-D-glucopyranoside from Leucas aspera L. with anti-inflammatory and wound healing activities. Journal of Pharmacy & Pharmacognosy Research, 4(2), 54-61.

https://www.researchgate.net/publication/293140654_Isolation_of_apigenin-7-O-6-O-E caffeoyl-b-D-glucopyranoside_from_Leucas_aspera_L_With_anti inflammatory_and_wound_healing_activities

Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screnning of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Phytotherapy Research, 15(2), 127-130. https://doi.org/10.1002/ptr.687

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4

Nascimento, R. J.; Araújo, C. R. & Melo, E. A. (2010). Atividade antioxidante de extratos de resíduo agroindustrial de goiaba (Psidium guajava L.). Alimentos e Nutrição Araraquara, 21(2), 209-216.

http://200.145.71.150/seer/index.php/alimentos/article/viewArticle/1171

Ostrosky, E. A., Mizumoto, M. K., Lima, M. E. L., Kaneko, T. M., Nishikawa, S. O., & Freitas, B. R. (2008). Métodos para avaliação da atividade antimicrobiana e determinação da concentração mínima inibitória (CMI) de plantas medicinais. Revista Brasileira de Farmacognosia, 18(2), 301-307.

https://doi.org/10.1590/S0102-695X2008000200026

Özay, Y., Güzel, S., Yumrutaş, Ö., Pehlivanoğlu, B., Erdoğdu, İ. H., Yildirim, Z., Türk, B. A., & Darcan, S. (2019). Wound healing effect of kaempferol in diabetic and nondiabetic rats. Journal of Surgical Research, 233, 284-296.

https://doi.org/10.1016/j.jss.2018.08.009

Pereira, D. S., Menezes, P. R., Belchior Filho, V., Sousa, A. H., & Maracajá, P. B. (2011). Abelhas indígenas criadas no Rio Grande do Norte. Acta Veterinaria Brasilica, 5(1), 81-91. https://doi.org/10.21708/avb.2011.5.1.2015

Petpiroon, N., Suktap, C., Pongsamart, S., Chanvorachote, P., & Sukrong, S. (2015). Kaempferol-3-O-rutinoside from Afgekia mahidoliae promotes keratinocyte migration through FAK and Rac1 activation. Journal of natural medicines, 69(3), 340-348. https://doi.org/10.1007/s11418-015-0899-3

Ramsey, D. T., Pope, E. R., Wagner-Mann, C., Berg, J. N., & Swaim, S. F. (1995). Effects of three occlusive dressing materials on healing of fullthickness skin wounds in dogs. American Journal of Veterinary Research, 56(7), 941- 949.

http://europepmc.org/article/med/7574165

Reynertson, K. A., Basile, M. J., & Kennelly, E. J. (2005). Antioxidant Potential of Seven Myrtaceous Fruits. Ethnobotany Research and Applications, 3, 025-035. https://doi:10.17348/era.3.0.25-36

Rogero, S. O., Lugão, A. B., Ikeda, T. I., & Cruz, Á. S. (2003). Teste in vitro de citotoxicidade: estudo comparativo entre duas metodologias. Materials Research, 6(3), 317-320. https://doi.org/10.1590/S1516-14392003000300003

Silva, J. B., Costa, K. M. F. M., Coelho, W. A. C., Paiva, K. A. R., Costa, G. A.V., Salatino, A., Freitas, C. I. A., & Batista, J. S. (2016). Quantificação de fenóis, flavonoides totais e atividades farmacológicas de geoprópolis de Plebeia aff. flavocincta do Rio Grande do Norte. Pesquisa Veterinária Brasileira, 36(9), 874-880.

http://dx.doi.org/10.1590/s0100-736x2016000900014

Silveira, F. A., Melo, G. A. R., & Almeida, E. A. B. (2002). Abelhas brasileiras: sistemática e identificação. Belo Horizonte.

Sousa, D. M. N., Olinda, R. G., Martins, C. G., Abrantes, M. R., Coelho, W. A. C., Silva, J. B. A., Morais, S. M., & Batista, J. S. (2015). Prospecção fitoquímica, toxicidade in vitro e avaliação das atividades anti-radicalar e antibacteriana da geoprópolis da abelha jandaíra. Acta Veterinaria Brasilica, 9(2), 134-140.

https://doi.org/10.21708/avb.2015.9.2.4784

Süntar, I. P., Akkol, E. K., Yalçin, F. N., Koca, U., Keleş, H., & Yesilada, E. (2010). Wound healing potential of Sambucus ebulus L. leaves and isolation of an active component, quercetin 3-O-glucoside. Journal of ethnopharmacology 129(1), 106-114. https://doi.org/10.1016/j.jep.2010.01.051

Torres, A. R., Sandjo, L. P., Friedemann, M. T., Tomazzoli, M. M., Maraschin, M., Mello, C. F., & Santos, A. R. S. (2018). Chemical characterization, antioxidant and antimicrobial activity of propolis obtained from Melipona quadrifasciata and Tetragonisca angustula stingless bees. Brazilian Journal of Medical and Biological Research, 51(6), 1-10. https://doi.org/10.1590/1414-431x20187118

Viana, G. S. B., Bandeira, M. A. M., & Matos, F. J. A. (2003). Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva Allemão. Phytomedicine, 10(2-3), 189-195.

https://doi.org/10.1078/094471103321659924

Waters, M. D., Brady, A. L., Stack, H. F., & Brockman, H. E. (1990). Antimutagenicity profiles for some model compounds. Mutation Research/Reviews in Genetic Toxicology. Res. 238(1), 57-85.

https://doi.org/10.1016/0165-1110(90)90039-E

Downloads

Published

06/11/2020

How to Cite

BATISTA, J. S.; SILVA, J. B. da; COSTA, K. M. de F. M. .; TEÓFILO , T. da S. .; FÉLIX, N. S. . . .; SILVA , F. H. A.; FERNANDES , L. C. B. .; SANTOS, W. L. A. D. .; RIBEIRO, W. L. C. .; VIANA, G. A. . Biological activity of geopropolis produced by Partamona cupira (Meliponinae, Apidae) in the semiarid of the Brazilian northeast. Research, Society and Development, [S. l.], v. 9, n. 11, p. e1259119644, 2020. DOI: 10.33448/rsd-v9i11.9644. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9644. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences