Determination of antioxidant activity and total phenols of pequi (Caryocar brasiliense Camb.)




Functional food; Oxidative stress; Plant extracts; Tropical fruit; Pequi.


Natural antioxidants in fruits draws enormous attention from the scientific community due to their role in the prevention and control of diseases associated with oxidative stress. The aim of this study was to evaluate the antioxidant activity of different concentrations of the aqueous extract obtained from the pequi pulp, using the combination of different methodologies. From 4 % (g/dL) of such extract, determined the concentration of total phenolic compounds and the in vitro analysis of the antioxidant potential were determined by assays of the sequestering activity of the radical 2,2-diphenyl-1-picryl-hydrazil (DPPH) and metal reducing power. For the ex vivo evaluation, the capacity of inhibiting lipid peroxidation, estimated by the formation of substances reactive to thiobarbituric acid, was determined in rat brain homogenate. The total phenolic content was 2.22 ± 0.045 g of tannic acid equivalents/100 g. DPPH test showed that all fractions of the processed samples had activity at different concentrations. Regarding the inhibition of lipid peroxidation, the Tukey test showed a reduction in levels, with a significant difference (p<0,05) from the concentration of 0.02 g/dL.  These results emphasize the importance of the consumption of pequi and suggest that, in addition to its high nutritional value, it has excellent bioactive properties and can, therefore, be a promising strategy for the development of new agroindustrial perspectives.


Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143-152.

Alara, O. R., Mudalip, S. K. A., Abdurahman, N. H., Mahmoud, M. S., & Obanijesu, E. O. (2019). Data on parametric influence of microwave-assisted extraction on the recovery yield, total phenolic content and antioxidant activity of Phaleria macrocarpa fruit peel extract. Chemical Data Collections, 24(1), 100277-100284. 100277.

Albuquerque, M. A. C., Levit, R., Beres, C., Bedani, R., Leblanc, A. M., Saad, S. M. I., & Leblanc, J. G. (2019). Tropical fruit by-products water extracts as sources of soluble fibres and phenolic compounds with potential antioxidant, anti-inflammatory, and functional properties. Journal of Functional Foods, 52(1), 724-733. 002.

Alves, A. M., Fernandes, D. C., Sousa, A. G. O., Naves, R. V., & Naves, M. M. V. N. (2014). Características físicas e nutricionais de pequis oriundos dos estados de Tocantins, Goiás e Minas Gerais. Brazilian Journal of Food Technology, 17(3), 198-203. 1981-6723.6013. Recuperado em 15 out. 2020 de pdf.

Amiano, P., Molina-Montes, E., Molinuevo, A., Huerta, J.-M., Romaguera, D., Gracia, E., Martín, V., Castaño-Vinyals, G., Pérez-Gómez, B., Moreno, V., Castilha, J., Gómez-Acebo, I., Jiménez-Moleón, J. J., Fernández-Tardón, G., Chirlaque. M. D., Capelo, R., Salas, L., Azpiri, M., Fernández-Villa, T., Bessa, X., Aragonés, N., Obón-Santacana, M., Guevara, M., Dierssen-Sotos, T., Barrios-Rodríguez, R., Molina de la Torre, A. J., Vega, A.-B., Pollán, M., Kogevinas, M., & Sánchez, M. J. Association study of dietary non-enzymatic antioxidant capacity (NEAC) and colorectal cancer risk in the Spanish Multicase–Control Cancer (MCC-Spain) study. European Journal of Nutrition, 58(6), 2229-2242. s00394-018-1773-3.

Annadurai, P., Annadurai, V., Yongkun, M., Pugazhendhi, A., & Dhandayuthapani, K. (2021). Phytochemical composition, antioxidant and antimicrobial activities of Plecospermum spinosum Trecul. Process Biochemistry, 100(1), 107-116. 2020.09.031.

Barreto, G. P. M., Benassi, M. T., & Mercadante, A. Z. (2009). Bioactive compounds from several tropical fruits and correlation by multivariate analysis to free radical scavenger activity. Journal of the Brazilian Chemical Society, 20(10), 1856-1861. 1590/S0103-50532009001000013. Recuperado em 15 out. 2020 de jbchs/v20n10/13.pdf.

Bjørklund, G., & Chirumbolo, S. (2017). Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition, 33(1), 311-321. 018.

Braham, F., Carvalho, D. O., Almeida, C. M. R., Zaidi, F., Magalhães, J. M. C., Guido, L. F., & Gonçalves, M.P. (2020). Online HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from Moringa oleifera leaves. South African Journal of Botany, 129(1), 146-154.

Brandão, M., Laca-Buendía, J. P., & Macedo, J. F. (2002). Árvores nativas e exóticas do Estado de Minas Gerais. Belo Horizonte. EPAMIG.

Cardoso, L. M., Reis, B. L., Hamacek, F. R., & Sant’ana, H. M. P. (2012). Chemical characteristics and bioactive compounds of cooked pequi fruits (Caryocar brasiliense Camb.) from the Brazilian Savannah. Fruits, 68(1), 3-14.

Chen, G., Fan, M.-X., Wu, J.-L., Li, N., & Guo, M. (2019). Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chemistry, 277(1), 706-712.

Faleiro, F. G., & Farias-Neto, A. L. (2008). Savanas: desafios e estratégias para o equilíbrio entre sociedade, agronegócio e recursos naturais. Planaltina: EMBRAPA.

Gobbo-Neto, L., & Lopes, N. P. (2007). Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, 30(2), 374-381. Recuperado em 15 out. 2020 de 25.pdf.

Goyal, M. R., & Suleria, H. A. R. (2019). Human health benefits of plant bioactive compounds: potentials and prospects. Florida: Apple Academic Press.

Hatano, T., Kagawa, H., Yasuhara, T., & Okuda T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavanging effects. Chemical Pharmaceutical Bulletin, 36(6), 2090-2097.

Leão, D. P., Franca, A. S., Oliveira, L. S., Bastos, R., & Coimbra, M. A. (2017). Physicochemical characterization, antioxidant capacity, total phenolic and proanthocyanidin content of flours prepared from pequi (Caryocar brasilense Camb.) fruit by-products. Food Chemistry, 225(1), 146-153.

Leonard, B., & Maes, M. (2012). Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience & Biobehavioral Reviews, 36(2), 764-785.

Lima, A. R., Barbosa, V. C., Santos Filho, P. R., & Gouvêa, C. M. C. P. (2006). Avaliação in vitro da atividade antioxidante do extrato hidroalcoólico de folhas de bardana. Revista Brasileira de Farmacognosia, 16(4), 531-536. Recuperado em 15 out. 2020 de

Lima, A., Silva, A. M. O., Trindade, R. A., Torres, R. P., & Mancini-Filho, J. (2007). Composição química e compostos bioativos presentes na polpa e na amêndoa do pequi (Caryocar brasiliense, Camb.). Revista Brasileira de Fruticultura, 29(3), 695–698. Recuperado em 15 out. 2020 de

Machado, M. T. C., Mello, B. C. B., & Hubinger, M. D. (2015). Evaluation of pequi (Caryocar Brasiliense Camb.) aqueous extract quality processed by membranes. Food and Bioproducts Processing, 95(1), 304-312.

Matos, F. J. A. (2007). Plantas medicinais: guia de seleção e emprego de plantas usadas em fitoterapia no Nordeste do Brasil. (3a ed.), Fortaleza: Imprensa Universitária.

Melo, E. A., Maciel, M. I. S., Lima, V. L. A. G., & Nascimento, R. J. (2008) Capacidade antioxidante de frutas. Revista Brasileira de Ciências Farmacêuticas, 44(2), 193-201. Recuperado em 15 out. 2020 de

Meza, A., Rojas, P., Cely-Veloza, W., Guerrero-Perilla, C., & Coy-Barrera, E. (2020). Variation of isoflavone content and DPPH• scavenging capacity of phytohormone-treated seedlings after in vitro germination of cape broom (Genista monspessulana). South African Journal of Botany, 130(1), 64-74.

Monteiro, S. S., Silva, R. R., Martins, S. C., Barin, J. S., & Rosa, C. S. (2015). Phenolic compounds and antioxidant activity of extracts of pequi peel (Caryocar brasiliense Camb.). International Food Research Journal, 22(5), 1985-1992. Recuperado em 15 out. 2020 de

Morais, M. L., Silva, A. C. R., Araújo, C. R. R., Esteves, E. A., & Dessimoni-Pinto, N. A. V. (2013). Determinação do potencial antioxidante in vitro de frutos do cerrado brasileiro. Revista Brasileira de Fruticultura, 35(2), 355-360. Recuperado em 15 out. 2020 de 04.pdf.

Mwamatope, B., Tembo, D., Chikowe, I., Kampira, E., & Nyirenda, C. (2020). Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African, 9(1), 481-488. sciaf.2020.e00481.

Nascimento, N. R. R., Mendes, N. S. R., & Silva, F. A. (2020). Nutritional composition and total phenolic compounds content of pequi pulp (Caryocar brasiliense Cambess.). Journal of Bioenergy and Food Science, 7(2), 1-10.

Navajas-Porras, B., Pérez-Burillo, S., Morales-Pérez, J., Rufián-Henares, J. A., & Pastoriza, S. (2020). Relationship of quality parameters, antioxidant capacity and total phenolic content of EVOO with ripening state and olive variety. Food Chemistry, 325(1), 126926-126939.

Neelam, A. K., & Krishna, K. S. (2019). Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Critical Reviews in Food Science and Nutrition, 60(16), 2655-2675. 1653822.

Newman, D. J., & Cragg, G. M. (2007). Natural Products as Sources of New Drugs over the Last 25 Years. Journal of Natural Products, 70(3), 461-477. 054v.

Nieva-Rchevarría, B., Goicoechea, E., & Guillén, M. D. (2017). Effect of liquid smoking on lipid hydrolysis and oxidation reactions during in vitro gastrointestinal digestion of European sea bass. Food Research International, 97(1), 51-61. 03.032.

Nowak, E., Livney, Y. D., Niu, Z., & Singh, H. (2019). Delivery of bioactives in food for optimal efficacy: what inspirations and insights can be gained from pharmaceutics? Trends in Food Science & Technology, 91(1), 557-573.

Oboh, G., & Henle, T. (2009). Antioxidant and inhibitory effects of aqueous extracts of Salvia officinalis leaves on pro-oxidant-induced lipid peroxidation in brain and liver in vitro. Journal of Medicinal Food, 12(1), 77-84.

Oliveira, M. N. S., Gusmão, E., Lopes, P. S. N., Simões, M. O. M., Ribeiro, L. M., & Dias, B. A. S. (2006) Estádio de maturação dos frutos e fatores relacionados aos aspectos nutritivos e de textura da polpa de pequi (Caryocar brasiliense Camb.). Revista Brasileira de Fruticultura, 28(3), 380-386. Recuperado em 15 out. 2020 de

Olszowy, M. (2019). What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiology and Biochemistry, 144(1), 135-143. 10.1016/j.plaphy.2019.09.039.

Panagiotakos, D. B., Pitsavos, C., Chrysohoou, C., Kokkinos, P., Toutouzas, P., & Stefanadis, C. (2003). The J-Shaped effect of coffee consumption on the risk of developing acute coronary syndromes: The CARDIO 2000 case-control study. Journal of Nutrition, 133(10), 3228-3232.

Paula-Junior, W., Rocha, F. H., Donatti, L., Fadel-Picheth, C. M.T., & Weffort-Santos, A. M. (2006). Leishmanicidal, antibacterial, and antioxidant activities of Caryocar brasiliense Cambess leaves hydroethanolic extract. Revista Brasileira de Farmacognosia, 16(1), 625-630. Recuperado em 15 out. 2020 de

Paz, J. G., Pacheco, P., Silva, C. O., & Pascoal, G. B. (2014). Análise da composição nutricional e de parâmetros físico-químicos do pequi (Caryocar brasiliense Camb) in natura. Linkania, 8(1), 73-86. Recuperado em 15 out. 2020 de 156/106.

Phuong, N. N. M., Le, T. T., Dang, M. Q., Van Camp, J., & Raes, K. (2020). Selection of extraction conditions of phenolic compounds from rambutan (Nephelium lappaceum L.) peel. Food and Bioproducts Processing, 122(1), 222-229. 008.

Ribeiro, D. M., Fernandes, D. C., Alves, A. M., & Naves, M. M. V. (2014). Carotenoids are related to the colour and lipid content of the pequi (Caryocar brasiliense Camb.) pulp from the Brazilian Savanna. Food Science and Technology, 34(3), 507-512. 1590/1678-457x.6369. Recuperado em 15 out. 2020 de aop_cta_6369.pdf.

Roesler, R., Catharino, R. R., Malta, L. G., Eberlin, M. N., & Pastore, G. (2008). Antioxidant activity of Caryocar brasiliense (pequi) and characterization of components by electrospray ionization mass spectrometry. Food Chemistry, 110(3), 711-717. foodchem.2008.02.048.

Roesler, R., Malta, L. G., Carrasco, L. C., Holanda, R. B., Sousa, C. A. S., & Pastore, G. M. (2007). Atividade antioxidante de frutas do cerrado. Ciência Tecnologia Alimentos, 27(1), 53-60. Recuperado em 15 out. 2020 de

Roginsky, V., & Lissi, E. A. (2005). Review of methods to determine chain-breaking antioxidant activity in food. Food Chemistry, 92(2), 235-54. chem.2004.08.004.

Rosso, V. V., & Mercadante, A. Z. (2007). Identification and quantification of carotenoids, By HPLC-PDA-MS/MS, from Amazonian fruits. Journal of Agricultural and Food Chemistry, 55(13), 5062-5072.

Sanches-Silva, A., Testai, L., Nabavi, S. F., Battino, M., Devi, K. P., Tejada, S., Sureda, A., Xu, S., Yousefi, B., Majidinia, M., Russo, G. L., Efferth, T., Nabavi, S. M., & Farzaei, M. H. (2020). Therapeutic potential of polyphenols in cardiovascular diseases: regulation of mtor signaling pathway. Pharmacological Research, 152(1), 104626-104636. 1016/j.phrs.2019.104626.

Sebio, R. M., Ferrarotti, N., Lairion, F., Magriñá, C. S., Fuda, J., Torti, H., Boveris, A., & Repetto, M. G. (2019). Brain oxidative stress in rat with chronic iron or copper overload. Journal of Inorganic Biochemistry, 199(1), 110799-110806. jinorgbio.2019.110799.

Shahidi, B., Sharifi, A., Nasiraie, L. R., Niakousari, M., & Ahmadi, M. (2020). Phenolic content and antioxidant activity of flixweed (Descurainia sophia) seeds extracts: ranking extraction systems based on fuzzy logic method. Sustainable Chemistry and Pharmacy, 16(1), 100245-100253.

Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects a review. Journal of Functional Foods, 18(1), 820-897.

Souza, T. J. T., Apel, M. A., Bordignon, S., Matzenbacher, N. I., Zuanazzi, J. A. S., & Henriques, A. T. (2007). Composição química e atividade antioxidante do óleo volátil de Eupatorium polystachyum DC. Revista Brasileira Farmacognosia, 17(3), 368-372. Recuperado em 15 out. 2020 de

Vasconcelos, S. M. L., Goulart, M. O. F., Moura, J. B. F. Manfredini, V. Benfato, M. S., & Kubota, L. T. (2007). Espécies reativas de oxigênio e de nitrogênio, antioxidantes e marcadores de dano oxidativo em sangue humano: principais métodos analíticos para sua determinação. Química Nova, 30(5), 1323-1338. Recuperado em 15 out. 2020 de a46v30n5.pdf.

Winterbourn, C. C., Gutteridge, J. M., & Halliwell, B. (1985). Doxorubicin dependent lipid peroxidation at low partial pressures of O2. Journal of Free Radicals in Biology and Mededicine, 1(1), 43-49.

Woisk, R. G., & Salatino, A. (1998). Analisys of própolis: some parameters and procedures for chemical quality control. Journal of Apicultural Research, 37(2), 99-105. 10.1080/00218839.1998.11100961.

Yalavarthi, C., & Thiruvengadarajan V. S. (2016). A review on identification strategy of phyto constituents present in herbal plants. International Journal of Research in Pharmaceutical Sciences, 4(2), 123-140.

Yen, G. C., & Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27-32. https://

Zhang, X., Li, X., Su, M., Du, J., Zhou, H., Li, X., & Ye, Z. (2020). A comparative UPLC-Q-TOF/MS-based metabolomics approach for distinguishing peach (Prunus persica (L.) Batsch) fruit cultivars with varying antioxidant activity. Food Research International, 137(1), 109531-109543.



How to Cite

DENGER, A. P. F. L.; KAWANO, L. de O.; PAULA, R. A. de O. .; SANTOS, L. B. .; RODRIGUES, M. R.; PAULA, F. B. de A.; DUARTE, S. M. da S. . Determination of antioxidant activity and total phenols of pequi (Caryocar brasiliense Camb.). Research, Society and Development, [S. l.], v. 9, n. 11, p. e2859119781, 2020. DOI: 10.33448/rsd-v9i11.9781. Disponível em: Acesso em: 23 feb. 2024.



Agrarian and Biological Sciences