Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9806

Keywords:

Density; Thermal conductivity; Thermal diffusivity; Back propagation; Moisture content; Temperature.

Abstract

Thermophysical properties are important in design, simulation, optimization, and control of food processing. Its prediction is very important but theoretical basis is difficult and empirical models were commonly used. In this work, the modeling of neural networks was applied as an alternative to predict density, thermal conductivity and thermal diffusivity from the temperature and moisture content of jackfruit, genipap and umbu. Data sets from literature were used, combined and individually, to obtain four networks. Supervised multilayer perceptron networks were developed, using the back-propagation algorithm. Several configurations of artificial neural networks (ANNs) were evaluated with one or two hidden layers and a maximum of 21 and 12 neurons in each one, respectively. Data sets were divided to learning (60%) and verification (40%) steps. Best ANNs were chosen based on correlation coefficient and root mean square errors (RMSE), and compared with polynomial models using average absolute deviations (AADs). From total disposable data set, the best ANN developed presents one hidden layer with 15 neurons and shows the same predictive ability of ANNs created from individual fruits data sets, presenting close RMSE and correlation coefficient. The ANNs developed presents AADs near to polynomial models and appers as alternative to conventional modeling. Results indicate that the ANN created from total data set can replace nine polynomial models to predict the thermophysical properties of jackfruit, genipap and umbu pulps.

References

Azoubel, P. M., Cipriani, D. C., El-Aouar, A. A., Antonio, G. C., Murr, F. E. X. (2005). Effect of concentration on the physical properties of cashew juice. Journal Food Engineering, 66, 413–417.

Braga, A. P., Carvalho, A. C. P. L. F., Ludermir, T. B. (2011). Redes neurais artificiais: teoria e aplicações. Rio de Janeiro: LTC Editora S.A.

Castilhos, M. B. M., Betiol, L. F. L., Carvalho, G. L., Telis-Romero, J. (2018). Experimental study of physical and rheological properties of grape juice using different temperatures and concentrations. Part II: Merlot. Food Research International, 105, 905–912.

Cepeda, E., Villarán, M. C. (1999). Density and viscosity of Malus floribunda juice as a function of concentration and temperature. Journal of Food Engineering, 41, 103–107.

Chegini, G. R., Khazaei J., Ghobadian B., Goudarzi, A. M. (2008). Prediction of process and product parameters in an orange juice spray dryer using artificial neural networks. Journal Food Engineering, 84, 534-543.

Choi, Y., Okos, M. R. (1986). Effects of temperature and composition on the thermal properties of foods. In: Le Maguer, M., Jelen, P. (eds.) Food engineering and process applications. London: Elsevier.

Constenla, D. T., Lozano, J. E., Crapiste, G. H. (1989). Thermophysical properties of clarified apple juice as a function of concentration and temperature. Journal Food Science, 54, 663-668.

Ewetumo, T., Ben, F., Adedayo, K. D. (2017). Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice. American Journal of Scientific and Industrial Research, 8(2), 22-33.

Fontan, R. C. I., Santos, L. S., Bonomo, R. C. F., Lemos, A. R., Ribeiro, R. P., Veloso, C. M. (2009). Thermophysical properties of coconut water affected by temperature. Journal of Food Process Engineering, 32, 382-397.

Hayken, S. (1999). Neural networks – a comprehensive foundation, (2nd ed.). Delhi: Pearson Education Inc.

Lertworasirikul, S., Tipsuwan, Y. (2008). Moisture content and water activity prediction of semi-finished cassava crackers from drying process with artificial neural network. Journal of Food Engineering, 84, 65-74.

Massood, H., Trujillo, F. J. (2016). Engineering Properties of Foods. Reference Module in Food Sciences, 1-2.

Mutlu, A. C., Boyaci, I. H., Genis, H. E., Ozturk, R., Basaran-Akgul, N., Sanal, T., Evlice, A. K. (2011). Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks. European Food Research and Technology, 233, 267–274.

Nayak, J., Vakula, K., Dinesh, P., Naik, B. Pelusi, D. (2020). Intelligent food processing: Journey from artificial neural network to deep learning. Computer Science Review, 38, DOI: 10.1016/j.cosrev.2020.100297

NeuralWare. (2000). Neural Computing: A technology handbook for NeuralWorks Professional II/Plus. Carnegie: Neural Ware Inc.

Rai, P., Majumdar, G. C., Dasgupta, S., De, S. (2005). Prediction of the viscosity of clarified fruit juice using artificial neural network: a combined effect of concentration and temperature. Journal Food Engineering, 68, 527-533.

Sartori, J. A. S., Ribeiro, K., Teixeira, A. C. S. C., Magri, N. T. C., Mandro, J. L., de Aguiar, C. L. (2017). Sugarcane Juice Clarification by Hydrogen Peroxide: Predictions with Artificial Neural Networks. International Journal of Food Engineering, 20160199.

Shamsudin, R., Mohamed, I. O., Yaman, N. K. M. (2005). Thermophysical properties of Thai seedless guava juice as affected by temperature and concentration. Journal Food Engineering, 66, 395–399.

Silva, L. R. I., Pereira, T. S., Silva, V. M. A., Silva, G. M., Luiz, M. R., Santos, N. C., Almeida, R. L. J., Ribeiro, V. H. A., Muniz, C. E. S., Eduardo, R. S., Silva, R. A. (2020). Thermophysical properties of seriguela pulp at different maturation stages. Research, Society and Development, 9(8), DOI: http://dx.doi.org/10.33448/rsd-v9i8.5566

Silva, N. M. C., Bonomo, R. C. F., Rodrigues, L. B., Chaves, M. A., Fontan, R. C. I., Bonomo, P., Landim, L. B., Sampaio, V. S. (2010). Thermophysical characterization of genipap pulp. International Journal Food Engineering, 6(3), DOI: 10.2202/1556-3758.1701.

Souza, M. A., Bonomo, R. C. F., Fontan, R. C. I., Minim, L. A., Coimbra, J. R., Bonomo, P. (2010). Thermophysical properties of umbu pulp. Brazilian Journal of Food Technology, 13, 219-225.

Souza, M. A., Bonomo, R. C. F., Fontan, R. C. I., Minim, L. A., Coimbra, J. S. R. (2009). Thermophysical properties of jackfruit pulp affected by changes in moisture content and temperature. Journal Food Processing Engineering, DOI: 10.1111/j.1745-4530.2009.00402.x.

Sucipto, S., Anna, M., Arwani, M., Hendrawan, Y. (2019). A rapid classification of wheat flour protein content using artificial neural network model based on bioelectrical properties. Telkomnika, 17(2), 920 -927.

Tavman, S., Otles, S., Glaue, S., Gogus, N. (2019). Food preservation Technologies. In: Galanakis, CM. Saving Food – Production, Supply Chain, Food Waste and Food Consuption. Academic Press, DOI: HTTPS://doi.org/10.1016/C2017-0-03480-8

Torkashvand, A. M., Ahmadi, A., Nikravesh, N. L. (2017). Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). Journal of Integrative Agriculture, 16(7), 1634–1644.

Varela, M. S. S., Pitombeira, G. C. R., Silva, A. C. N., Pereira, C. G. (2017). Determination and Modeling of Thermophysical and Transport Properties of Tropical Pulps. European Journal of Biophysics, 5(5), 79-88.

Walstra, P. (2003). Physical chemistry of foods. New York: Marcel Dekker Inc.

Zuritz, C. A., Muñoz Puntes, E., Mathey, H. H., Pérez, E. H., Gascón, A., Rubio, L. A., Carullo, C. A., Chernikoff, R. E., Cabeza, M. S. (2005). Density, viscosity and coefficient of thermal expansion of clear grape juice at different soluble solid concentrations and temperatures. Journal Food Engineering, 71, 143–149.

Downloads

Published

02/12/2020

How to Cite

SANTOS, L. S.; MORAES, M. N. de .; LOPES, J. D. S.; BAUER, L. C.; BONOMO, P.; BONOMO, R. C. F. Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach. Research, Society and Development, [S. l.], v. 9, n. 11, p. e7509119806, 2020. DOI: 10.33448/rsd-v9i11.9806. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9806. Acesso em: 12 nov. 2024.

Issue

Section

Engineerings