Ascophyllum nodosum seaweed extract effect on morphology and cellulolytic ability of the fungus Fusarium oxysporum f. sp. vasinfectum

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9913

Keywords:

Fusariosis; Cotton Wilt; Fungi Physiology; Mode of Action; Biomolecules.

Abstract

This work aimed to verify the effect in vitro, of Ascophyllum nodosum (AN) seaweed extract on the morphology and cellulolytic capacity of the fungus Fusarium oxysporum f. sp. vasinfectum (FOV). Thus, the fungus was placed in contact with different doses of the extract, being these: 0, 0.5, 1.0, 2.0, 4.0 and 8.0%. It was verified that the product, with increasing doses, progressively induced mycelial growth of the fungus, as measured by the diameter of the colonies and fresh mass of mycelium grown in PD (potato-dextrose) culture medium. This result was also corroborated by the progressive increase in the activity of the β-1,3-glucanase and chitinase enzymes required during the hypha elongation process. However, the AN extract progressively reduced FOV sporulation with increasing doses. Furthermore, the cellulolytic capacity of the phytopathogen was significantly reduced in the presence of the algae extract, which was measured by the activity of the enzymes endo-β-1,4-glucanase, exo-β-1,4-glucanase and β-glucosidase. Thus, these facts constitute important information for the management of fusariosis, since the inhibition of sporulation and decreasing degradation capacity of the cellulose by the pathogen, can translate into declined disease in compatible host-pathogen interactions.

References

Adams, D. J. (2004). Fungal cell wall chitinases and glucanases. Microbiology, 150(7), 2029-2035.

Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory mycology (No. Ed. 4). John Wiley and Sons.

Ambika, S., & Sujatha, K. (2014). Comparative studies on brown, red and green alga seaweed extracts for their antifungal activity against Fusarium oxysporum f. sp. udum in Pigeon pea var. CO (Rg) 7 (Cajanus cajan (L.) Mills.). Journal of Biopesticides, 7(2), 167.

Ambika, S., & Sujatha, K. (2015). Antifungal activity of aqueous and ethanol extracts of seaweeds against sugarcane red rot pathogen (Colletotrichum falcatum). Scientific Research and Essays, 10(6), 232-235.

Barros, J. D. S. G., GOMES, E. C. D. S., & Cavalcanti, L. S. (2015). Efeito de extratos de Allamanda blanchetti no controle de Alternaria brassicicola em mudas de couve-manteiga. Revista Caatinga, 28(3), 36-46.

Bartnicki-Garcia, S. (1970). Cell wall composition and other biochemical markers in fungal phylogeny. Phytochemical phylogeny. Academic Press. pp. 81-103.

Bauermeister, A., Rezende, M. I., Giese, E. C., Dekker, R. F. H., & de Melo Barbosa, A. (2010). beta-(1, 3)-Glucanases Fúngicas: Produção e Aplicações Biotecnológicas. Semina: Ciências Exatas e Tecnológicas, 31(2), 75-86.

Bedendo, I. P. (2011). Murchas vasculares. Manual de Fitopatologia. (v. 1, ed. 4, pp. 451-458). Ceres.

Belanche, A., Ramos‐Morales, E., & Newbold, C. J. (2016). In vitro screening of natural feed additives from crustaceans, diatoms, seaweeds and plant extracts to manipulate rumen fermentation. Journal of the Science of Food and Agriculture, 96(9), 3069-3078.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.

Colapietra, M., & Alexander, A. (2006, January). Effect of foliar fertilization on yield and quality of table grapes. In V International Symposium on Mineral Nutrition of Fruit Plants 721 (pp. 213-218).

Conrad, M., Schothorst, J., Kankipati, H. N., Van Zeebroeck, G., Rubio-Texeira, M., & Thevelein, J. M. (2014). Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS microbiology reviews, 38(2), 254-299.

Coşoveanu, A., Axine, O., Iacomi, B. (2010). Antifungal activity of macroalgae extracts. UASVM Bucharest 3, 442-447.

Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., ... & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology, 13(4), 414-430.

Deshpande, V., & Eriksson, K. E. (1988). 1, 4-β-Glucosidases of Sporotrichum pulverulentum. In Methods in enzymology (Vol. 160, pp. 415-424). Academic Press.

Freddo, Á., Mazaro, S., Borin, M., Busso, C., Cechin, F., Zorzzi, I., ... & Lewandowski, A. (2016). Essential oil potential herb-luisa (Aloysia citriodora Palau) in the control of Fusarium sp. in vitro. Revista Brasileira de Plantas Medicinais, 18(2), 558-562.

Guedes, C. E. S., Alvarez, R. C., Ximenes, E. A., Paulillo, L. C., Lima, S. T. C., & Barbosa, L. V. (2017). Enzyme activity of cellulases produced by Moniliophtora perniciosa, the causing factor of “witch–broom” in cacao plants. MAGISTRA, 26(4), 545-553.

Hirayama, T., Horie, S., Nagayama, H., & Matsuda, K. (1978). Studies on Cellulases of a Phytopathogenic Fungus, Pyricularia oryzae Cavara: II. Purification and Properties of a β-Glucosidase. The Journal of Biochemistry, 84(1), 27-37.

Jayaraman, J., & Ali, N. (2015). 10 Use of Seaweed Extracts for Disease Management of Vegetable Crops. Sustainable Crop Disease Management using Natural Products, 160.

Jayaraman, J., Norrie, J., & Punja, Z. K. (2011). Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. Journal of Applied Phycology, 23(3), 353-361.

Jiménez-Escrig, A., Gómez-Ordóñez, E., & Rupérez, P. (2011). Seaweed as a source of novel nutraceuticals: sulfated polysaccharides and peptides. In Advances in food and nutrition research (Vol. 64, pp. 325-337). Academic Press.

Khan, W., Hiltz, D., Critchley, A. T., & Prithiviraj, B. (2011). Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. Journal of Applied Phycology, 23(3), 409-414.

Kombrink, E., & Hahlbrock, K. (1986). Responses of cultured parsley cells to elicitors from phytopathogenic fungi: timing and dose dependency of elicitor-induced reactions. Plant Physiology, 81(1), 216-221.

Lever, M. (1972). A new reaction for colorimetric determination of carbohydrates. Analytical biochemistry, 47(1), 273-279.

Lima, O. D. D. R., dos Santos, M. S. B., & Rodrigues, A. A. C. (2014). Ação antifúngica in vitro de isolados de Bacillus sp. sobre Fusarium oxysporum f. sp. lycopersici. Revista Caatinga, 27(4), 57-64.

Limberger, P. A., & Gheller, J. A. (2012). Efeito da aplicação foliar de extrato de algas, aminoácidos e nutrientes via foliar na produtividade e qualidade de alface crespa. Revista Brasileira de Energias Renováveis, 1(1), 148-161.

Marx, D. H. (1969). Influence of ectotrophic mycorrhizal fungi on resistance or pine roots to pathogenic infections. I Antagonisum of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology, 59, 153-163.

Marzluf, G. A. (1997). Genetic regulation of nitrogen metabolism in the fungi. Microbiology and Molecular Biology Reviews, 61(1), 17-32.

Mattner, S. W., Villalta, O. N., Wite, D., Porter, I. J., & Arioli, T. (2014). In vitro suppression of Sclerotinia minor by a seaweed extract from Durvillaea potatorum and Ascophyllum nodosum. Australasian Plant Disease Notes, 9(1), 137.

Melo, T. A. (2017). Efeito do extrato da alga marinha Ascophyllum nodosum e do fosfito de potássio na morfofisiologia do fungo Colletotrichum gloeosporioides, na indução de resistência em mangas ‘Tommy Atkins’ contra a antracnose e em características físicas e químicas desses frutos (Doctoral dissertation, Universidade de São Paulo).

Moerschbacher, B. M., Noll, U. M., Flott, B. E., & Reisener, H. J. (1988). Lignin biosynthetic enzymes in stem rust infected, resistant and susceptible near-isogenic wheat lines. Physiological and Molecular Plant Pathology, 33(1), 33-46.

Norrie, J., & Keathley, J. P. (2005, June). Benefits of ascophyllum nodosum marine-plant extract applications to Thompson Seedless grape production. In X International Symposium on Plant Bioregulators in Fruit Production 727 (pp. 243-248).

Odds, F. C., Brown, A. J., & Gow, N. A. (2003). Antifungal agents: mechanisms of action. Trends in microbiology, 11(6), 272-279.

Oliari, I. C. R., Barcelos, R. A., Fedrigo, K., Garcia, C., Marchi, T., & Botelho, R. V. (2014). Extrato de alga no controle in vitro de Monilinia fructicola. Cadernos de Agroecologia, 9(1).

Pascholati, S. F. (2011). Fisiologia do parasitismo: como os patógenos atacam as plantas. Manual de fitopatologia: princípios e conceitos, 4, 543-589.

Peres, J. C. F., Carvalho, L. R. D., Gonçalez, E., Berian, L. O. S., & Felicio, J. D. (2012). Evaluation of antifungal activity of seaweed extracts. Ciência e Agrotecnologia, 36(3), 294-299.

Roncal, T., & Ugalde, U. (2003). Conidiation induction in Penicillium. Research in Microbiology, 154(8), 539-546.

Ryu, D. D., & Mandels, M. (1980). Cellulases: biosynthesis and applications. Enzyme and Microbial Technology, 2(2), 91-102.

Schwan-Estrada, K. R. F., Stangarlin, J. R., Fiori, A. C. G., & Pascholati, S. F. (2003). Atividade celulolítica in vitro de Cylindrocladium clavatum e o efeito de filtrados de cultivo do fitopatógeno sobre plântulas de eucalipto. Acta Scientiarum. Agronomy, 25(1), 155-160.

Schwan-Estrada, K. R. F., Stangarlin, J. R., & Pascholati, S. F. (2008). Mecanismos bioquímicos de defesa vegetal. Interação planta patógeno–fisiologia, bioquímica e biologia molecular. Piracicaba: FEALQ, 227-248.

Silva, J. L., Souza, P. E., Monteiro, F. P., Freitas, M. L. O., Júnior, S., & Belan, L. L. (2014). Antifungal activity using medicinal plant extracts against pathogens of coffee tree. Revista brasileira de plantas medicinais, 16(3), 539-544.

Stadnik, M.J., Freitas, M.B. (2012). Polissacarídeos algais: fonte de indutores de resistência de plantas. Indução de Resistência em Plantas a Patógenos. Viçosa, MG: Editora UFV, 29-50.

Su, Y. Y., Qi, Y. L., & Cai, L. (2012). Induction of sporulation in plant pathogenic fungi. Mycology, 3(3), 195-200.

Toledo, G.L., Ovalle, II. (2008). Estatística Básica. (2. ed.). São Paulo. Atlas.

Ugarte, R. A., Sharp, G., & Moore, B. (2006). Changes in the brown seaweed Ascophyllum nodosum (L.) Le Jol. Plant morphology and biomass produced by cutter rake harvests in southern New Brunswick, Canada. In Eighteenth International Seaweed Symposium (pp. 125-133). Springer, Dordrecht.

van Diepeningen, A. D., & de Hoog, G. S. (2016). Challenges in Fusarium, a trans-kingdom pathogen. Mycopathologia, 181(3-4), 161-163.

Wang, Y., Xu, Z., Bach, S. J., & McAllister, T. A. (2008). Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Animal Feed Science and Technology, 145(1-4), 375-395.

Wood, T. M. (1985). Properties of cellulolytic enzyme systems. Biochemical Society Transactions 13, 407-410.

Wulandari, N. F., To-Anun, C., Hyde, K. D., Duong, L. M., De Gruyter, J., Meffert, J. P., ... & Crous, P. W. (2009). Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Diversity, 34(1), 23-39.

Downloads

Published

19/11/2020

How to Cite

MELO, T. A. de .; SERRA, I. M. R. de S. .; NASCIMENTO, I. T. V. da S. do . Ascophyllum nodosum seaweed extract effect on morphology and cellulolytic ability of the fungus Fusarium oxysporum f. sp. vasinfectum. Research, Society and Development, [S. l.], v. 9, n. 11, p. e4079119913, 2020. DOI: 10.33448/rsd-v9i11.9913. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9913. Acesso em: 2 jan. 2025.

Issue

Section

Agrarian and Biological Sciences