Sensors selection for tiles thermal performance test for poultry sheds

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10279

Keywords:

Sensor Equivalence; Linear correlation; Poultry houses.

Abstract

One of the biggest problems that Brazil faces in the production of eggs and broiler chicken is the climatic factor, because Brazil is a tropical country with inadequate climatic conditions for the production of the animals, making the performance of the birds less. Considering that in the present article, it is expected to be able to select sensors that, in the future, will confirm whether thermoacoustic tiles, replacing ceramic tiles or fiber cement tiles in legacy sheds, can bring better thermal comfort and reduce stress for laying hens , making it possible to increase egg production and decrease stressors. These low-cost sensors, produced for use with Arduino microcontrollers, were selected for comparison with a commercial datalogger. To check the relationship between the datalogger and the electronic sensors, scatter plots were constructed, comparing the readings of the measured sensors with the standard used, and the percentage of variance between the measured temperatures and humidity was evaluated. The correlation between the readings was evaluated based on the values of Pearson's linear correlation coefficients “r”. Sensors were chosen in which the means were equal, where the two-tailed critical t-test was less than the statistical t and as confirmed by the strong Pearson correlation. Thus, it was concluded that these chosen sensors can be used in a future experiment without major investments in dataloggers due to their proven equivalence.

Author Biographies

Brayam Moreira Da Silva, Universidade Estadual Paulista "Júlio de Mesquita Filho"

Master's student of the Graduate Program in Agribusiness and Development (PGAD) at the Faculty of Science and Engineering (FCE) at UNESP in Tupã / SP.

Mario Mollo Neto, Universidade Estadual Paulista “Júlio de Mesquita Filho”

Prof. Dr. Mario Mollo Neto, CNPq Scholar - DT-II Process: 313339 / 2019-8 - Productivity in Technological Development and Innovative Extension, Free Lecturer in Digital Circuits at Universidade Estadual Paulista "Júlio de Mesquita Filho" UNESP; (2019). He has a Post Doctorate in Biosystems Engineering in the area of Rural Constructions and Ambience, from the State University of Campinas (2009), a Doctorate in Agricultural Engineering (CAPES Concept 5) in the area of Rural Constructions and Ambience from the State University of Campinas (2007) , Master's in Production Engineering (CAPES Concept 5) from Universidade Paulista UNIP (2004), and a degree in Industrial Engineering from the São Judas Tadeu University (USJT) (1987). He is currently an Associate Professor in the Biosystems Engineering Course at the Faculty of Science and Engineering (FCE) at Universidade Estadual Paulista - UNESP in TUPÃ.

Department of Biosystems Engineering.

References

Almeida, E. A.& Passini, R. (2013). Thermal comfort in reduced models of broilers’ houses, under different types of roofing materials. Eng. Agríc., Jaboticabal, 33(1)19-27.

Arduino. (2019). Arduino IDE 1.8.13. Open-source Arduino Software (IDE). Ivrea Interaction Design Institute. Recuperado de: https://www.microsoft.com/pt-br/p/arduino-ide/9nblggh4rsd8?ocid=badge&rtc=1&activetab=pivot:overviewtab

Baêta, F. C. & Souza, C. F. (2010). Ambiência em edificações rurais: Conforto animal. 2.ed. Viçosa: UFV, 269p.

Camerini, N.L., Mendes L.B., Mota, J.K.M., Nascimento, J.W.B., Furtado, D.A. (2011). Avaliação de instrumentos agrometeorológicos alternativos para o monitoramento da ambiência em galpões avícolas. Engenharia na Agricultura, Viçosa - MG, 19(2) 125-131.

Carvalho, C. C. S., Souza, C. F., Tinôco, I. de F. F., Vieira, M. F. A., Minette, L. J. (2011). Segurança, saúde e ergonomia de trabalhadores em galpões de frangos de corte equipados com diferentes sistemas de abastecimento de ração. Engenharia Agrícola, 31(1) 438-447.

Chasea, O. A., Almeida, J. F. S., Souza, J. R. B., Costa Junior, C. T. (2014). Sensory platform architecture for IN SITU monitoring the thermal comfort in rural environments – The case study at Federal Rural University of Amazonian, Brazil. Measurement, 58(1) 294–300.

Devore, J. L. (2006). Probabilidade e Estatística: para Engenharia e Ciências. California Polytechnic State University, San Luis Obispo. São Paulo: Cengage Learning.

Garson, G. D. (2020). Statnotes: Topics in Multivariate Analysis. Recuperado de: http://faculty.chass.ncsu.edu/garson/PA765/statnote.htm

Giles, D. B., Balafouts, C., Maheras, P. (1990). Too hot for comfort: The heatwaves in Greece in 1987 and 1988. International Journal of Biometeorology, 34(1) 98-104.

Guimarães, P. R. B. (2005). Análise de Correlação e medidas de associação. Recuperado de: https://docs.ufpr.br/~jomarc/correlacao.pdf.

Megersa, B., Markemann, A., Angassa, A., Ogutu, J.O., Piepho, H., Zaráte, A. V. (2014). Impacts of climate change and variability on cattle production in southern Ethiopia: Perceptions and empirical evidence. Agricultural Systems, 130(1) 23–34.

Mollo, M. N., Matulovic, M., Santos, P. S. B. (2020). Supervisory System for Monitoring, Control and Estimating Thermal Comfort for Broiler and Laying Hens Production Sheds. International Journal for Innovation Education and Research. 8(3) 316-331.

Mollo, M. N., Gabriel, C. P. C., Santos, V. J.; Zanetti, W. A. L. (2015). Avaliação de sensores eletrônicos para uso em instrumentos agrometeorológicos alternativos em galpões avícolas. Enciclopédia Biosfera, Centro Científico Conhecer - Goiânia, 11(21) 2527-2541.

Moore, D. S., McCabe, G. P., Bruce, A. C. (2007). The Basic Practice of Statistics. New York, W. H. Freeman and Company, New York.

Nääs, I. A., Sevegnani, K. B., Marcheto, F. G., Espelho, J. C. C., Menegassi, V., Silva, I. J. O. (2001). Avaliação térmica de telhas de composição de celulose e betumem, pintadas de branco, em modelos de aviários com escala reduzida. Engenharia Agrícola, Jaboticabal, 21(2) 121-126.

Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M.S., Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science,130(1) 57–69.

Oliveira, P.M., Faria Júnior, M.J.A., Garcia Neto, M. (2016). Estratégias para minimizar os efeitos de um ambiente térmico adverso para frangos de corte. Arq. Bras. Med. Vet. Zootec. 68(3) 739-747.

Padilha, J.A.S., Tolêdo Filho, R.D., Lima, P.R.L., Joseph, K., Leal, A.F. (2001). Argamassa leve reforçada com polpa de sisal: compósito de baixa condutividade térmica para uso em edificações rurais. Engenharia Agrícola, Jaboticabal, 21(1) 1-11.

Pereira, E. (2016). Ferramentas da Qualidade: Diagrama de Dispersão. IFSul – Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense. Recuperado de: http://static.sapucaia.ifsul.edu.br/professores/eveline/EST.%20QUAL.%20-%20T%C3%89C.%20PL%C3%81ST/2%C2%B0Sem/7%20Diagrama%20de%20Dispers%C3%A3o.pdf.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE.

Powers, W., Liu, Z., Vaddella, V. (2013). Climate Vulnerabilities of the Poultry Industry. Earth Systems and Environmental Sciences, 2(1) 73–76.

Riquena, R. S., Pereira, D. F., Vale, M. M., Salgado, D. D. A. (2019). Mortality prediction of laying hens due to heat waves. Revista Ciência Agronômica, 50(1) 18-26.

Silva, I.J.O. & Sevegnani, K.B. (2001). Ambiência na produção de aves de postura. In: Ambiência na produção de aves em clima tropical. Piracicaba: FUNEP, p.150-214.

Silva, V. P., Werf, H. M.G. V. D., Soares, S. R., Corson, M. S. (2014). Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. Journal of Environmental Management, 133(1) 222-231.

Soutullo, S., Enríquez, R., Jiménez, M. J., Heras M. R. (2014). Thermal comfort evaluation in a mechanically ventilated office building located in a continental climate. Energy and Buildings, 81(1) 424–429.

Tinôco, I. F. F. (2001). Avicultura industrial: novos conceitos de materiais, concepções e técnicas construtivas disponíveis para galpões avícolas brasileiros. Revista Brasileira de Ciência Avícola, 3(1) 1-25.

Torres Júnior, J. R. S., Pires, M. F. A., Sá, W. F., Ferreira, A. M., Vianna, J. H. M., Camargo, L. S. A., Ramos, A. A., Folhadella, I. M., Polisseni, J., Freitas, C., Clemente, C. A. A., Sá Filho, M. F., Paula, L. F. F., Baruselli, P. S. (2008). Effect of maternal heatstress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology. 69(1) 155-166.

Turnpenny, J. R., Wathes, C. M., Clark, J. A., McArthur, A. J. (2000). Thermal balance of livestock. 2. Applications of a parsimonious model. Agricultural and Forest Meteorology. 101(1) 29-52.

Yanagi Junior, T., Amaral, A. G., Teixeira, V. H., Lima, R. R. (2011). Caracterização espacial do ambiente termoacústico e de iluminância em galpão comercial para criação de frangos de corte. Revista Engenharia Agrícola, Jaboticabal, 31(1) 1-12.

Zanoni, V. A., Dantas, A. L. F., Nunes, L. S., Rios, R. B. (2020). Estudo higrotérmico na autoconstrução: simulação computacional e medições em campo. Ambient. constr., 20(3) 109-120.

Published

28/11/2020

How to Cite

SILVA, B. M. D. .; MOLLO NETO, M. . Sensors selection for tiles thermal performance test for poultry sheds. Research, Society and Development, [S. l.], v. 9, n. 11, p. e62491110279, 2020. DOI: 10.33448/rsd-v9i11.10279. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10279. Acesso em: 25 dec. 2024.

Issue

Section

Engineerings