Seleção de sensores para ensaio de performance térmica de telhas para galpões de aves
DOI:
https://doi.org/10.33448/rsd-v9i11.10279Palavras-chave:
Equivalência de Sensores; Correlação linear; Galpões avícolas.Resumo
Um dos maiores problemas que o Brasil enfrenta na produção de ovos e de frango de corte é o fator climático, pois o Brasil é um país tropical possuindo condições climáticas inadequadas para a produção dos animais, fazendo com que o desempenho das aves seja menor. Considerando que no presente artigo, espera-se poder selecionar sensores que, no futuro, permitam confirmar se telhas termoacústicas, em substituição às telhas de cerâmicas ou telhas de fibrocimento em galpões legados, podem trazer melhor conforto térmico e reduzir o estresse para as galinhas poedeiras, possibilitando aumento na produção de ovos e diminuição dos efeitos estressores. Estes sensores de baixo custo, produzidos para uso com microcontroladores Arduino, foram selecionados para uma comparação com um datalogger comercial. Para verificar a relação entre o datalogger e os sensores eletrônicos, construíram-se os gráficos de dispersão, comparando as leituras dos sensores medidos com o padrão utilizado, e avaliou-se o percentual da variância entre as temperaturas e umidades medidas. A avaliação da correlação entre as leituras foi feita com base nos valores dos coeficientes de correlação linear “r” de Pearson. Foram escolhidos os sensores em que as médias foram iguais, onde o teste t crítico bi-caudal foi menor que o t estatístico e conforme confirmação da correlação de Pearson forte. Assim, concluiu-se que estes sensores escolhidos poderão ser utilizados em experimento futuro sem grandes investimentos em dataloggers devido à sua comprovada equivalência.
Referências
Almeida, E. A.& Passini, R. (2013). Thermal comfort in reduced models of broilers’ houses, under different types of roofing materials. Eng. Agríc., Jaboticabal, 33(1)19-27.
Arduino. (2019). Arduino IDE 1.8.13. Open-source Arduino Software (IDE). Ivrea Interaction Design Institute. Recuperado de: https://www.microsoft.com/pt-br/p/arduino-ide/9nblggh4rsd8?ocid=badge&rtc=1&activetab=pivot:overviewtab
Baêta, F. C. & Souza, C. F. (2010). Ambiência em edificações rurais: Conforto animal. 2.ed. Viçosa: UFV, 269p.
Camerini, N.L., Mendes L.B., Mota, J.K.M., Nascimento, J.W.B., Furtado, D.A. (2011). Avaliação de instrumentos agrometeorológicos alternativos para o monitoramento da ambiência em galpões avícolas. Engenharia na Agricultura, Viçosa - MG, 19(2) 125-131.
Carvalho, C. C. S., Souza, C. F., Tinôco, I. de F. F., Vieira, M. F. A., Minette, L. J. (2011). Segurança, saúde e ergonomia de trabalhadores em galpões de frangos de corte equipados com diferentes sistemas de abastecimento de ração. Engenharia Agrícola, 31(1) 438-447.
Chasea, O. A., Almeida, J. F. S., Souza, J. R. B., Costa Junior, C. T. (2014). Sensory platform architecture for IN SITU monitoring the thermal comfort in rural environments – The case study at Federal Rural University of Amazonian, Brazil. Measurement, 58(1) 294–300.
Devore, J. L. (2006). Probabilidade e Estatística: para Engenharia e Ciências. California Polytechnic State University, San Luis Obispo. São Paulo: Cengage Learning.
Garson, G. D. (2020). Statnotes: Topics in Multivariate Analysis. Recuperado de: http://faculty.chass.ncsu.edu/garson/PA765/statnote.htm
Giles, D. B., Balafouts, C., Maheras, P. (1990). Too hot for comfort: The heatwaves in Greece in 1987 and 1988. International Journal of Biometeorology, 34(1) 98-104.
Guimarães, P. R. B. (2005). Análise de Correlação e medidas de associação. Recuperado de: https://docs.ufpr.br/~jomarc/correlacao.pdf.
Megersa, B., Markemann, A., Angassa, A., Ogutu, J.O., Piepho, H., Zaráte, A. V. (2014). Impacts of climate change and variability on cattle production in southern Ethiopia: Perceptions and empirical evidence. Agricultural Systems, 130(1) 23–34.
Mollo, M. N., Matulovic, M., Santos, P. S. B. (2020). Supervisory System for Monitoring, Control and Estimating Thermal Comfort for Broiler and Laying Hens Production Sheds. International Journal for Innovation Education and Research. 8(3) 316-331.
Mollo, M. N., Gabriel, C. P. C., Santos, V. J.; Zanetti, W. A. L. (2015). Avaliação de sensores eletrônicos para uso em instrumentos agrometeorológicos alternativos em galpões avícolas. Enciclopédia Biosfera, Centro Científico Conhecer - Goiânia, 11(21) 2527-2541.
Moore, D. S., McCabe, G. P., Bruce, A. C. (2007). The Basic Practice of Statistics. New York, W. H. Freeman and Company, New York.
Nääs, I. A., Sevegnani, K. B., Marcheto, F. G., Espelho, J. C. C., Menegassi, V., Silva, I. J. O. (2001). Avaliação térmica de telhas de composição de celulose e betumem, pintadas de branco, em modelos de aviários com escala reduzida. Engenharia Agrícola, Jaboticabal, 21(2) 121-126.
Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M.S., Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science,130(1) 57–69.
Oliveira, P.M., Faria Júnior, M.J.A., Garcia Neto, M. (2016). Estratégias para minimizar os efeitos de um ambiente térmico adverso para frangos de corte. Arq. Bras. Med. Vet. Zootec. 68(3) 739-747.
Padilha, J.A.S., Tolêdo Filho, R.D., Lima, P.R.L., Joseph, K., Leal, A.F. (2001). Argamassa leve reforçada com polpa de sisal: compósito de baixa condutividade térmica para uso em edificações rurais. Engenharia Agrícola, Jaboticabal, 21(1) 1-11.
Pereira, E. (2016). Ferramentas da Qualidade: Diagrama de Dispersão. IFSul – Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense. Recuperado de: http://static.sapucaia.ifsul.edu.br/professores/eveline/EST.%20QUAL.%20-%20T%C3%89C.%20PL%C3%81ST/2%C2%B0Sem/7%20Diagrama%20de%20Dispers%C3%A3o.pdf.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE.
Powers, W., Liu, Z., Vaddella, V. (2013). Climate Vulnerabilities of the Poultry Industry. Earth Systems and Environmental Sciences, 2(1) 73–76.
Riquena, R. S., Pereira, D. F., Vale, M. M., Salgado, D. D. A. (2019). Mortality prediction of laying hens due to heat waves. Revista Ciência Agronômica, 50(1) 18-26.
Silva, I.J.O. & Sevegnani, K.B. (2001). Ambiência na produção de aves de postura. In: Ambiência na produção de aves em clima tropical. Piracicaba: FUNEP, p.150-214.
Silva, V. P., Werf, H. M.G. V. D., Soares, S. R., Corson, M. S. (2014). Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. Journal of Environmental Management, 133(1) 222-231.
Soutullo, S., Enríquez, R., Jiménez, M. J., Heras M. R. (2014). Thermal comfort evaluation in a mechanically ventilated office building located in a continental climate. Energy and Buildings, 81(1) 424–429.
Tinôco, I. F. F. (2001). Avicultura industrial: novos conceitos de materiais, concepções e técnicas construtivas disponíveis para galpões avícolas brasileiros. Revista Brasileira de Ciência Avícola, 3(1) 1-25.
Torres Júnior, J. R. S., Pires, M. F. A., Sá, W. F., Ferreira, A. M., Vianna, J. H. M., Camargo, L. S. A., Ramos, A. A., Folhadella, I. M., Polisseni, J., Freitas, C., Clemente, C. A. A., Sá Filho, M. F., Paula, L. F. F., Baruselli, P. S. (2008). Effect of maternal heatstress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology. 69(1) 155-166.
Turnpenny, J. R., Wathes, C. M., Clark, J. A., McArthur, A. J. (2000). Thermal balance of livestock. 2. Applications of a parsimonious model. Agricultural and Forest Meteorology. 101(1) 29-52.
Yanagi Junior, T., Amaral, A. G., Teixeira, V. H., Lima, R. R. (2011). Caracterização espacial do ambiente termoacústico e de iluminância em galpão comercial para criação de frangos de corte. Revista Engenharia Agrícola, Jaboticabal, 31(1) 1-12.
Zanoni, V. A., Dantas, A. L. F., Nunes, L. S., Rios, R. B. (2020). Estudo higrotérmico na autoconstrução: simulação computacional e medições em campo. Ambient. constr., 20(3) 109-120.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Brayam Moreira Da Silva; Mario Mollo Neto
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.