Seleção de sensores para ensaio de performance térmica de telhas para galpões de aves

Autores

DOI:

https://doi.org/10.33448/rsd-v9i11.10279

Palavras-chave:

Equivalência de Sensores; Correlação linear; Galpões avícolas.

Resumo

Um dos maiores problemas que o Brasil enfrenta na produção de ovos e de frango de corte é o fator climático, pois o Brasil é um país tropical possuindo condições climáticas inadequadas para a produção dos animais, fazendo com que o desempenho das aves seja menor. Considerando que no presente artigo, espera-se poder selecionar sensores que, no futuro, permitam confirmar se telhas termoacústicas, em substituição às telhas de cerâmicas ou telhas de fibrocimento em galpões legados, podem trazer melhor conforto térmico e reduzir o estresse para as galinhas poedeiras, possibilitando aumento na produção de ovos e diminuição dos efeitos estressores. Estes sensores de baixo custo, produzidos para uso com microcontroladores Arduino, foram selecionados para uma comparação com um datalogger comercial. Para verificar a relação entre o datalogger e os sensores eletrônicos, construíram-se os gráficos de dispersão, comparando as leituras dos sensores medidos com o padrão utilizado, e avaliou-se o percentual da variância entre as temperaturas e umidades medidas. A avaliação da correlação entre as leituras foi feita com base nos valores dos coeficientes de correlação linear “r” de Pearson. Foram escolhidos os sensores em que as médias foram iguais, onde o teste t crítico bi-caudal foi menor que o t estatístico e conforme confirmação da correlação de Pearson forte. Assim, concluiu-se que estes sensores escolhidos poderão ser utilizados em experimento futuro sem grandes investimentos em dataloggers devido à sua comprovada equivalência.

Biografia do Autor

Brayam Moreira Da Silva, Universidade Estadual Paulista "Júlio de Mesquita Filho"

Mestrando do Programa de Pós-Graduação em Agronegócio e Desenvolvimento (PGAD) da Faculdade de CIências e Engenharia (FCE) da UNESP de Tupã/SP.

Mario Mollo Neto, Universidade Estadual Paulista “Júlio de Mesquita Filho”

Prof. Dr. Mario Mollo Neto, Bolsista CNPq - DT-II Processo: 313339/2019-8 - Produtividade em Desenvolvimento Tecnológico e Extensão Inovadora, Livre-docente em Circuitos Digitais pela Universidade Estadual Paulista "Júlio de Mesquita Filho" UNESP; (2019). Possui Pós Doutorado em Engenharia de Biossistemas na área de Construções Rurais e Ambiência, pela Universidade de Estadual de Campinas (2009), Doutorado em Engenharia Agrícola (Conceito CAPES 5) na área de Construções Rurais e Ambiência pela Universidade de Estadual de Campinas (2007), Mestrado em Engenharia de Produção (Conceito CAPES 5) pela Universidade Paulista UNIP (2004), e graduação em Engenharia Industrial Modalidade Eletrotécnica pela Universidade São Judas Tadeu (USJT) (1987). Atualmente é Professor associado do Curso de Engenharia de Biossistemas da Faculdade de Ciências e Engenharia (FCE) da Universidade Estadual Paulista - UNESP em TUPÃ.

Departamento de Engenharia de Biossistemas.

Referências

Almeida, E. A.& Passini, R. (2013). Thermal comfort in reduced models of broilers’ houses, under different types of roofing materials. Eng. Agríc., Jaboticabal, 33(1)19-27.

Arduino. (2019). Arduino IDE 1.8.13. Open-source Arduino Software (IDE). Ivrea Interaction Design Institute. Recuperado de: https://www.microsoft.com/pt-br/p/arduino-ide/9nblggh4rsd8?ocid=badge&rtc=1&activetab=pivot:overviewtab

Baêta, F. C. & Souza, C. F. (2010). Ambiência em edificações rurais: Conforto animal. 2.ed. Viçosa: UFV, 269p.

Camerini, N.L., Mendes L.B., Mota, J.K.M., Nascimento, J.W.B., Furtado, D.A. (2011). Avaliação de instrumentos agrometeorológicos alternativos para o monitoramento da ambiência em galpões avícolas. Engenharia na Agricultura, Viçosa - MG, 19(2) 125-131.

Carvalho, C. C. S., Souza, C. F., Tinôco, I. de F. F., Vieira, M. F. A., Minette, L. J. (2011). Segurança, saúde e ergonomia de trabalhadores em galpões de frangos de corte equipados com diferentes sistemas de abastecimento de ração. Engenharia Agrícola, 31(1) 438-447.

Chasea, O. A., Almeida, J. F. S., Souza, J. R. B., Costa Junior, C. T. (2014). Sensory platform architecture for IN SITU monitoring the thermal comfort in rural environments – The case study at Federal Rural University of Amazonian, Brazil. Measurement, 58(1) 294–300.

Devore, J. L. (2006). Probabilidade e Estatística: para Engenharia e Ciências. California Polytechnic State University, San Luis Obispo. São Paulo: Cengage Learning.

Garson, G. D. (2020). Statnotes: Topics in Multivariate Analysis. Recuperado de: http://faculty.chass.ncsu.edu/garson/PA765/statnote.htm

Giles, D. B., Balafouts, C., Maheras, P. (1990). Too hot for comfort: The heatwaves in Greece in 1987 and 1988. International Journal of Biometeorology, 34(1) 98-104.

Guimarães, P. R. B. (2005). Análise de Correlação e medidas de associação. Recuperado de: https://docs.ufpr.br/~jomarc/correlacao.pdf.

Megersa, B., Markemann, A., Angassa, A., Ogutu, J.O., Piepho, H., Zaráte, A. V. (2014). Impacts of climate change and variability on cattle production in southern Ethiopia: Perceptions and empirical evidence. Agricultural Systems, 130(1) 23–34.

Mollo, M. N., Matulovic, M., Santos, P. S. B. (2020). Supervisory System for Monitoring, Control and Estimating Thermal Comfort for Broiler and Laying Hens Production Sheds. International Journal for Innovation Education and Research. 8(3) 316-331.

Mollo, M. N., Gabriel, C. P. C., Santos, V. J.; Zanetti, W. A. L. (2015). Avaliação de sensores eletrônicos para uso em instrumentos agrometeorológicos alternativos em galpões avícolas. Enciclopédia Biosfera, Centro Científico Conhecer - Goiânia, 11(21) 2527-2541.

Moore, D. S., McCabe, G. P., Bruce, A. C. (2007). The Basic Practice of Statistics. New York, W. H. Freeman and Company, New York.

Nääs, I. A., Sevegnani, K. B., Marcheto, F. G., Espelho, J. C. C., Menegassi, V., Silva, I. J. O. (2001). Avaliação térmica de telhas de composição de celulose e betumem, pintadas de branco, em modelos de aviários com escala reduzida. Engenharia Agrícola, Jaboticabal, 21(2) 121-126.

Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M.S., Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science,130(1) 57–69.

Oliveira, P.M., Faria Júnior, M.J.A., Garcia Neto, M. (2016). Estratégias para minimizar os efeitos de um ambiente térmico adverso para frangos de corte. Arq. Bras. Med. Vet. Zootec. 68(3) 739-747.

Padilha, J.A.S., Tolêdo Filho, R.D., Lima, P.R.L., Joseph, K., Leal, A.F. (2001). Argamassa leve reforçada com polpa de sisal: compósito de baixa condutividade térmica para uso em edificações rurais. Engenharia Agrícola, Jaboticabal, 21(1) 1-11.

Pereira, E. (2016). Ferramentas da Qualidade: Diagrama de Dispersão. IFSul – Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense. Recuperado de: http://static.sapucaia.ifsul.edu.br/professores/eveline/EST.%20QUAL.%20-%20T%C3%89C.%20PL%C3%81ST/2%C2%B0Sem/7%20Diagrama%20de%20Dispers%C3%A3o.pdf.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE.

Powers, W., Liu, Z., Vaddella, V. (2013). Climate Vulnerabilities of the Poultry Industry. Earth Systems and Environmental Sciences, 2(1) 73–76.

Riquena, R. S., Pereira, D. F., Vale, M. M., Salgado, D. D. A. (2019). Mortality prediction of laying hens due to heat waves. Revista Ciência Agronômica, 50(1) 18-26.

Silva, I.J.O. & Sevegnani, K.B. (2001). Ambiência na produção de aves de postura. In: Ambiência na produção de aves em clima tropical. Piracicaba: FUNEP, p.150-214.

Silva, V. P., Werf, H. M.G. V. D., Soares, S. R., Corson, M. S. (2014). Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. Journal of Environmental Management, 133(1) 222-231.

Soutullo, S., Enríquez, R., Jiménez, M. J., Heras M. R. (2014). Thermal comfort evaluation in a mechanically ventilated office building located in a continental climate. Energy and Buildings, 81(1) 424–429.

Tinôco, I. F. F. (2001). Avicultura industrial: novos conceitos de materiais, concepções e técnicas construtivas disponíveis para galpões avícolas brasileiros. Revista Brasileira de Ciência Avícola, 3(1) 1-25.

Torres Júnior, J. R. S., Pires, M. F. A., Sá, W. F., Ferreira, A. M., Vianna, J. H. M., Camargo, L. S. A., Ramos, A. A., Folhadella, I. M., Polisseni, J., Freitas, C., Clemente, C. A. A., Sá Filho, M. F., Paula, L. F. F., Baruselli, P. S. (2008). Effect of maternal heatstress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology. 69(1) 155-166.

Turnpenny, J. R., Wathes, C. M., Clark, J. A., McArthur, A. J. (2000). Thermal balance of livestock. 2. Applications of a parsimonious model. Agricultural and Forest Meteorology. 101(1) 29-52.

Yanagi Junior, T., Amaral, A. G., Teixeira, V. H., Lima, R. R. (2011). Caracterização espacial do ambiente termoacústico e de iluminância em galpão comercial para criação de frangos de corte. Revista Engenharia Agrícola, Jaboticabal, 31(1) 1-12.

Zanoni, V. A., Dantas, A. L. F., Nunes, L. S., Rios, R. B. (2020). Estudo higrotérmico na autoconstrução: simulação computacional e medições em campo. Ambient. constr., 20(3) 109-120.

Downloads

Publicado

28/11/2020

Como Citar

SILVA, B. M. D. .; MOLLO NETO, M. . Seleção de sensores para ensaio de performance térmica de telhas para galpões de aves. Research, Society and Development, [S. l.], v. 9, n. 11, p. e62491110279, 2020. DOI: 10.33448/rsd-v9i11.10279. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10279. Acesso em: 25 dez. 2024.

Edição

Seção

Engenharias