Stomatal plasticity in leaves of Ichthyothere terminalis (Spreng) Blake (Asteraceae) at different seasons

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10291

Keywords:

Cerrado; Stomatal density; Climatic seasonality; Drought.

Abstract

Cerrado has a diverse flora that occurs in different physiognomies. One of the striking features of the biome is the occurrence of well-defined rainy and dry seasons. During drought, Cerrado plants are subject to water restrictions. Stomata, which are epidermal structures responsible for gas exchanges, are essential for maintaining the plant water status. Ichthyothere terminalis (Spreng.) Blake is an herbaceous Asteraceae widespread e in the open Cerrado physiognomies. The species has a thickened underground system, which contributes to the plant's persistence in the environment. At the end of the drought, the aerial organs resprout. The objective of this work was to evaluate the stomatal dimensions in leaves of Ichthyothere terminalis at different seasons. Collections were carried out in open Cerrado physiognomies in dry and rainy periods, in which the plants were in different phenological phases. The leaves were collected, preserved, and fixed following the usual methods for anatomical and histometric analysis. The epidermis was cleared, and measurements and counts were made under a light microscope. The leaves of Ichthyothere terminalis are amphistomatic, with higher stomatal density on the abaxial surface. The density of stomata on the abaxial surface was higher in the transition between dry and rainy seasons. The area of the stomatal pores was greater at the beginning of the drought on both epidermal surfaces. The species showed the ability to change the attributes of stomata in different seasons, and this can contribute to its occurrence in habitats subject to seasonal drought.

Author Biography

Dayana Figueiredo Abdalla, Instituto Federal de Educação, Ciência e Tecnologia de Goiás

Doutoranda em Agronomia na área de Produção Vegetal pela Universidade Federal de Goiás, Goiânia, Brasil. Docente no Instituto Federal de Educação, Ciência e Tecnologia de Goiás – Campus Itumbiara, Itumbiara-GO, Brasil.

References

Abdalla, D. F., Moraes, M. G., Rezende, M. H., Hayashi, A. H. & Carvalho, M. A. M. (2016). Morpho-anatomy and fructans in the underground system of Apopyros warmingii and Ichthyothere terminalis (Asteraceae) from the cerrado rupestre. Journal of the Torrey Botanical Society, 143: 69–86. http://dx.doi.org/10.3159/TORREY-D-14-00050.1.

Batalha, M. A., Aragaki, S., & Mantovani, W. (1997). Variações fenológicas das espécies do cerrado em Emas-Pirassununga, SP. Acta Botanica Brasilica, 11: 61-78. https://doi.org/10.1590/S0102-33061997000100007.

Camargo, M. A. B., & Marenco, R. A. (2011). Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. Acta Amazonica, 41: 205-212. https://doi.org/10.1590/S0044-59672011000200004.

Costa, B. N., Costa, I. J., Souza, G. A., Santos, D. N., Silveira, F. A., Melo, E. T., Martins, A. D., Pasqual, M., Setotaw, T. A., & Rodrigues, F. A. (2018). Anatomical modifications of Butia capitata propagated under colored shade nets. Anais da Academia Brasileira de Ciências, 90: 3615-3624. https://doi.org/10.1590/0001-3765201820170347.

Coutinho, L. M. (2002). O bioma do cerrado. In: Klein, A. Eugen Warming e o cerrado brasileiro: um século depois. São Paulo: Editora UNESP. 77–91.

de Almeida, L. V., Ferri, P. H., Seraphin, J. C., & de Moraes, M. G. (2017). Seasonal changes of fructans in dimorphic roots of Ichthyothere terminalis (Spreng.) Blake (Asteraceae) growing in Cerrado. Science of The Total Environment, 598: 404-412. https://doi.org/10.1016/j.scitotenv.2017.04.100

De Micco, V., & Aronne, G. (2012). Morpho-anatomical traits for plant adaptation to drought. In: Aroca, R., Plant responses to drought stress. Springer, Berlin, Heidelberg. 37-61.

Dunn, J., Hunt, L., Afsharinafar, M., Meselmani, M. A., Mitchell, A., Howells, R., Wallington, E., Fleming, A. J. & Gray, J. E. (2019). Reduced stomatal density in bread wheat leads to increased water-use efficiency. Journal of Experimental Botany, 70: 4737-4748. https://doi.org/10.1093/jxb/erz248.

Evert, R. F. (2006). Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. John Wiley & Sons. 601 p.

Fanourakis, D., Giday, H., Milla, R., Pieruschka, R., Kjaer, K. H., Bolger, M., Vasilevski, A. Nunes-Nesi, A., Fiorani, F. & Ottosen, C. O. (2015). Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides. Annals of Botany, 115: 555-565. https://doi.org/10.1093/aob/mcu247.

Franco, A. C. (2002). Ecophysiology of woody plants. In: Oliveira, P. S. & Marquis, R. J. The Cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press. pp. 178–197.

Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4: 9. Recuperado em: https://palaeo-electronica.org/2001_1/past/past.pdf.

Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424: 901-908. https://doi.org/10.1038/nature01843.

Hoffmann, W. A. (1998). Post-burn reproduction of woody plants in a neotropical savanna: the relative importance of sexual and vegetative reproduction. Journal of Applied Ecology, 35: 422–433. https://doi.org/10.1046/j.1365-2664.1998.00321.x.

Johansen, D. A. (1940). Plant microtechnique. McGraw-Hill Book Company, Inc: London; 530p.

Lawson, T., James, W., & Weyers, J. (1998). A surrogate measure of stomatal aperture. Journal of Experimental Botany, 49: 1397-1403. https://doi.org/10.1093/jxb/49.325.1397.

Lawson, T., & Matthews, J. (2020). Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71: 273-302. https://doi.org/10.1146/annurev-arplant-050718-100251.

Mantovani, W., & Martins, F. R. (1988). Variações fenológicas das espécies do cerrado da Reserva Biológica de Moji-Guaçu, Estado de São Paulo. Revista Brasileira de Botânica, 11: 101–112.

Muir, C. D. (2015). Making pore choices: repeated regime shifts in stomatal ratio. Proceedings of the Royal Society B: Biological Sciences, 282: 20151498. https://doi.org/10.1098/rspb.2015.1498.

Nakajima, J.N., & Mondin, C.A. 2020. Ichthyothere in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: <http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB16146>. Acesso em: 15 nov. 2020

Pautov, A., Bauer, S., Ivanova, O., Krylova, E., Sapach, Y., & Gussarova, G. (2017). Role of the outer stomatal ledges in the mechanics of guard cell movements. Trees, 31, 125-135. https://doi.org/10.1007/s00468-016-1462-x.

Pereira, R. C. A. (2007). História taxonômica do gênero Ichthyothere Mart., família Asteraceae. Anais da Academia Pernambucana de Ciência Agronômica, 4:147-161.

Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE.

Ribeiro, J. F. & Walter, B. M. T. (1998). Fitofisionomias do bioma Cerrado. In: Sano, S. M.; Almeida, S.P. (Eds.). Cerrado ambiente e flora. Planaltina: Embrapa, p.120-124.

Richardson, F., Brodribb, T. J., & Jordan, G. J. (2017). Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Tree Physiology, 37: 869-878. https://doi.org/10.1093/treephys/tpx073.

Roque, N. Teles, A. M., & Nakajima, J. A. (2017). A família Asteraceae no Brasil: classificação e diversidade. Salvador: EDUFBA 260 p.

Rossatto, D. R., & Kolb, R. M. (2012). Structural and functional leaf traits of two Gochnatia species from distinct growth forms in a sclerophyll forest site in Southeastern Brazil. Acta Botanica Brasilica, 26: 849-856. http://dx.doi.org/10.1590/S0102-33062012000400014.

Rossatto, D. R., Hoffmann, W. A., & Franco, A. C. (2009). Características estomáticas de pares congenéricos de cerrado e mata de galeria crescendo numa região transicional no Brasil Central. Acta Botanica Brasilica, 23: 499–508. http://dx.doi.org/10.1590/S0102-33062009000200021.

Santos, V. S. D. (2013). Morfoanatomia dos órgãos vegetativos de Chrysolaena simplex (Less) Dematt. e Lessingianthus buddleiifolius (Mart. ex DC.) H. Rob. (Asteraceae) em ambientes rupestres da Serra Dourada, Goiás. Dissertação (mestrado) – Universidade Federal de Goiás – GO. Recuperado de: https://repositorio.bc.ufg.br/tede/bitstream/tede/3698/5/Disserta%C3%A7%C3%A3o%20-%20Vanessa%20Sardinha%20dos%20Santos%20-%202013.pdf

Shobe, W. R., & Lersten, N. R. (1967). A technique for clearing and staining gymnosperm leaves. Botanical Gazette, 128: 150–152. https://doi.org/10.1086/336391.

Silva, T. M., Vilhalva, D. A., Moraes, M. G., & Figueiredo-Ribeiro, R. D. C. L. (2015). Anatomy and fructan distribution in vegetative organs of Dimerostemma vestitum (Asteraceae) from the campos rupestres. Anais da Academia Brasileira de Ciências, 87: 797-812. http://dx.doi.org/10.1590/0001-3765201520140214.

Souza, V. P. (2014). Morfoanatomia de órgãos vegetativos aéreos e sistemas subterrâneos de Ichthyothere mollis Baker. e Jungia floribunda Less. (Asteraceae) ocorrentes no cerrado rupestre do estado de Goiás. Dissertação (mestrado) – Universidade Federal de Goiás – GO. Recuperado de: https://repositorio.bc.ufg.br/tede/bitstream/tede/3522/5/Disserta%C3%A7%C3%A3o%20-%20Vinicius%20Pina%20Souza%20-%202014.pdf.

Published

03/12/2020

How to Cite

VIEIRA NETO, H.; ABDALLA, D. F.; MORAES, M. G. de. Stomatal plasticity in leaves of Ichthyothere terminalis (Spreng) Blake (Asteraceae) at different seasons. Research, Society and Development, [S. l.], v. 9, n. 11, p. e76591110291, 2020. DOI: 10.33448/rsd-v9i11.10291. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10291. Acesso em: 9 jan. 2025.

Issue

Section

Agrarian and Biological Sciences