Drying process of clay ceramic materials: a review
DOI:
https://doi.org/10.33448/rsd-v9i11.10300Keywords:
Ceramics; Drying; Quality; Control; Optimization.Abstract
Drying is a heat and mass transfer operation involving the removal of moisture, being an important and expensive step in the manufacturing process of several products. For ceramic materials, the drying process is necessary to remove the water that was added to the clay in the molding step and to provide the necessary strength to reduce the chances of failure during the product firing step. Control of the drying process is essential to reduce defects in the material, loss of productivity and energy consumption. Due to its importance, this work aims to present a review of several topics related to the drying of ceramic materials. Here, different aspects are discussed, such as: the fundamentals, moisture removal kinetics, defects, control and optimization of the drying process, with emphasis on clay products. The idea is to provide subsidies so that researchers and industrialists can improve their knowledge and make appropriate decisions on this topic of great importance for the country's economy.
References
Almeida, G. S., Fernandes, M. A. F., Fernandes, J. N., Neves, G. A., Barbosa de Lima, W. M. P., & de Lima, A. G. B. (2014). Drying of industrial ceramic bricks: An experimental investigation in oven. Defect and Diffusion Forum, 353, 116–120. https://doi.org/10.4028/www.scientific.net/DDF.353.116
Alves, H. J., Melchiades, F. G., & Boschi, A. O. (2008). Consumo de gás natural na indústria de revestimentos cerâmicos brasileira (Consumption of natural gas in Brazilian ceramic tile industry). Cerâmica, 54(331), 326–331.
Araújo, M. V., Delgado, J., & Barbosa de Lima, A. G. (2016). On the Use of CFD in Thermal Analysis of Industrial Hollow Ceramic Brick. Diffusion Foundations, 10, 70–82. https://doi.org/10.4028/www.scientific.net/DF.10.70
Araújo, M. V., Santos, R. S., da Silva, R. M., & Barbosa de Lima, A. G. (2017). Drying of Industrial Hollow Ceramic Brick: Analysis of the Moisture Content and Temperature Parameters. Defect and Diffusion Forum, 380, 72–78. https://doi.org/10.4028/www.scientific.net/DDF.380.72
Augier, F., Coumans, W. J., Hugget, A., & Kaasschieter, E. F. (2002). On the risk of cracking in clay drying. Chemical Engineering Journal, 86(1–2), 133–138. https://doi.org/10.1016/S1385-8947(01)00279-0
Banaszak, J., & Kowalski, S. J. (2005). Theoretical and experimental analysis of stresses and fractures in clay like materials during drying. Chemical Engineering and Processing: Process Intensification, 44(4), 497–503. https://doi.org/10.1016/j.cep.2004.06.012
Barbosa Da Silva, J., Almeida, G. S., Barbosa de Lima, W. C. P., Neves, G. A., & de Lima, A. G. B. (2011). Heat and mass diffusion including shrinkage and hygrothermal stress during drying of holed ceramics bricks. Defect and Diffusion Forum, 312, 971–976. https://doi.org/10.4028/www.scientific.net/DDF.312-315.971
Barbosa da Silva, J., Almeida, G. S., Neves, G. A., Barbosa de Lima, W. C. P., de Farias Neto, S. R., & de Lima, A. G. B. (2012). Heat and mass transfer and volume variations during drying of industrial ceramic bricks: an experimental investigation. Defect and Diffusion Forum, 326, 267–272. https://doi.org/10.4028/www.scientific.net/DDF.326-328.267
Batista, V. R., Nascimento, J. J. S., & LIMA, A. G. B. L. (2009). Secagem e retração volumétrica de tijolos cerâmicos maciços e vazados: uma investigação teórica e experimental. Matéria, Rio de Janeiro, 14(4). https://doi.org/10.1590/S1517-70762009000400002
Batista, V. R., Nascimento, J. J. S., & Lima, A. G. B. (2008). Secagem e queima de tijolos cerâmicos maciços e vazados incluindo variações dimensionais e danos estruturais. Revista Eletrônica de Materiais e Processos, 3(1), 46–61.
Bergman, T. L., Incropera, F. P., DeWitt, D. P., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons.
Boch, P., & Niepce, J.-C. (2010). Ceramic Materials: Processes, Properties, and Applications (Vol. 98). John Wiley & Sons.
Brongniart, A. (1844). Traité des arts céramiques ou des poteries considérées dans leur histoire, leur pratique et leur théorie (Vol. 2). Bechet; Mathias.
Brosnan, D. A., & Robinson, G. C. (2003). Introduction to drying of ceramics: with laboratory exercises. American Ceramic Society.
Cadé, M. A., Nascimento, J. J. S., & Lima, A. G. B. (2005). Secagem de tijolos cerâmicos vazados: uma aproximação por volumes finitos. Revista Matéria, 10(3), 443–453.
Callister Jr, W. D., & Rethwisch, D. G. (2012). Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons.
Callister Jr, W. D., & Rethwisch, D. G. (2011). Materials science and engineering (Vol. 5). John Wiley & Sons NY.
Cengel, Y. A. (2007). Heat and mass transfer. Tata McGraw-Hill Education.
Chua, K. J., Mujumdar, A. S., & Chou, S. K. (2003). Intermittent drying of bioproducts––an overview. Bioresource Technology, 90(3), 285–295. https://doi.org/10.1016/S0960-8524(03)00133-0
Cihan, A., Kahveci, K., & Hacıhafızoğlu, O. (2007). Modelling of intermittent drying of thin layer rough rice. Journal of Food Engineering, 79(1), 293–298. https://doi.org/10.1016/j.jfoodeng.2006.01.057
Clark, D. E., & Sutton, W. H. (1996). Microwave processing of materials. Annual Review of Materials Science, 26(1), 299–331.
Comini, G., & Lewis, R. W. (1976). A numerical solution of two-dimensional problems involving heat and mass transfer. International Journal of Heat and Mass Transfer, 19(12), 1387–1392. https://doi.org/10.1016/0017-9310(76)90067-3
da Silva Almeida, G., da Silva, J. B., e Silva, C. J., Swarnakar, R., de Araújo Neves, G., & de Lima, A. G. B. (2013). Heat and mass transport in an industrial tunnel dryer: modeling and simulation applied to hollow bricks. Applied Thermal Engineering, 55(1–2), 78–86. https://doi.org/10.1016/j.applthermaleng.2013.02.042
de Lima, A. G. B., da Silva, J. B., Almeida, G. S., Nascimento, J. J. S., Tavares, F. V. S., & Silva, V. S. (2016). Clay products convective drying: foundations, modeling and applications. In Drying and Energy Technologies (pp. 43–70). https://doi.org/10.1007/978-3-319-19767-8_3
Defraeye, T. (2014). Advanced computational modelling for drying processes–A review. Applied Energy, 131, 323–344. https://doi.org/10.1016/j.apenergy.2014.06.027
Edgar, R. H., & Osepchuk, J. M. (2001). Consumer, commercial, and industrial microwave ovens and heating systems. In Handbook of Microwave Technology for Food Application (pp. 215–278). New York, USA: Marcel Dekker.
Etuk, S. E., Akpabio, I. O., & Udoh, E. M. (2003). Comparison of the thermal properties of clay samples as potential walling material for naturally cooled building design. Journal of Environmental Sciences, 15(1), 65–68.
Ford, R. W. (2013). Ceramics drying. Oxford, England: Elsevier.
Fortes, M., & Okos, M. R. (1980). Drying theories: their bases and limitations as applied to foods and grains. Advances in Drying, 1, 119–154.
Hasatani, M., Itaya, Y., & Hayakawa, K. (1992). -Viscoelastic Strain-Stress and Heat/Moisture Transfer. Drying Technology, 10(4), 1013–1036. https://doi.org/10.1080/07373939208916493
Hasatani, M., Itaya, Y., Muroie, K., & Taniguchi, S. (1993). Contraction characlfrlstlcs of molded ceramics during drying. Drying Technology, 11(4), 815–830. https://doi.org/10.1080/07373939308916865
Itaya, Y., Mabuchi, S., & Hasatani, M. (1995). Deformation behavior of ceramic slabs by nonuniform drying. Drying Technology, 13(3), 801–819. https://doi.org/10.1080/07373939508916984
Itaya, Y., Mori, S., & Hasatani, M. (1999). Effect of intermittent heating on drying-induced strain-stress of molded clay. Drying Technology, 17(7–8), 1261–1271. https://doi.org/10.1080/07373939908917613
Itaya, Y., Okouchi, K., & Mori, S. (2001). Effect of heating modes on internal strain–stress formation during drying of molded ceramics. Drying Technology, 19(7), 1491–1504. https://doi.org/10.1081/DRT-100105302
Itaya, Y., Taniguchi, S., & Hasatani, M. (1997). A numerical study of transient deformation and stress behavior of a clay slab during drying. Drying Technology, 15(1), 1–21. https://doi.org/10.1080/07373939708917216
Itaya, Y., Uchiyama, S., Hatano, S., & Mori, S. (2005). Drying enhancement of clay slab by microwave heating. Drying Technology, 23(6), 1243–1255. https://doi.org/10.1081/DRT-200059487
Itaya, Y., Uchiyama, S., & Mori, S. (2007). Internal heating effect and enhancement of drying of ceramics by microwave heating with dynamic control. Transport in Porous Media, 66(1–2), 29–42. https://doi.org/10.1007/s11242-006-9020-4
Kawaguti, W. M. (2005). Estudo do comportamento térmico de um fornos intermitentes tipo paulistinha utilizados na indústria de cerâmica vermelha (Dissertação de Mestrado em Engenharia Mecânica, Universidade Federal de Santa Catarina, Santa Catarina). Obtido em https://repositorio.ufsc.br/handle/123456789/101786
Ketelaars, A. A. J., Jomaa, W., Piggali, J. R., & Coumans, W. J. (1992). Drying shrinkage and stresses. 8th International Drying Symposium (IDS’92), August 2-5, 1992, Montreal, Quebec, Canada. Elsevier.
Keum, Y. T., Jeong, J. H., & Auh, K. H. (2000). Finite-element simulation of ceramic drying processes. Modelling and Simulation in Materials Science and Engineering, 8(4), 541.
Khalili, K., Bagherian, M., & Khisheh, S. (2014). Numerical simulation of drying ceramic using finite element and machine vision. Procedia Technology, 12, 388–393. https://doi.org/10.1016/j.protcy.2013.12.504
Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. (1976). Introduction to ceramics (Vol. 183). Wiley New York.
Kowalski, S. J., & Pawłowski, A. (2011). Energy consumption and quality aspect by intermittent drying. Chemical Engineering and Processing: Process Intensification, 50(4), 384–390. https://doi.org/10.1016/j.cep.2011.02.012
Kowalski, S. J., & Rybicki, A. (2004). Qualitative aspects of convective and microwave drying of saturated porous materials. Drying Technology, 22(5), 1173–1189. https://doi.org/10.1081/DRT-120038586
Kowalski, S. J., Musielak, G., & Banaszak, J. (2010). Heat and mass transfer during microwave‐convective drying. AIChE Journal, 56(1), 24–35. https://doi.org/10.1002/aic.11948
Kowalski, S. J., Rajewska, K., & Rybicki, A. (2004). Mechanical effects in saturated capillary-porous materials during convective and microwave drying. Drying Technology, 22(10), 2291–2308. https://doi.org/10.1081/DRT-200040004
Kowalski, S. J., Rajewska, K., & Rybicki, A. (2005). Stresses generated during convective and microwave drying. Drying Technology, 23(9–11), 1875–1893. https://doi.org/10.1080/07373930500210226
Kowalski, S. J. (2012). Thermomechanics of drying processes (Vol. 8). https://doi.org/10.1007/978-3-540-36405-4
Kowalski, S. J., & Mielniczuk, B. (2007). Analysis of effectiveness and stress development during convective and microwave drying. Drying Technology, 26(1), 64–77. https://doi.org/10.1080/07373930701781637
Kumar, C., Karim, M. A., & Joardder, M. U. H. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48–57. https://doi.org/10.1016/j.jfoodeng.2013.08.014
ltaya, Y., & Hasatani, M. (1996). R & D Needs-Drying of Ceramics. Drying Technology, 14(6), 1301–1313. https://doi.org/10.1080/07373939608917147
Margueron, J. (2003). Les mésopotamiens. Editions A&J Picard.
Mihoubi, D., & Bellagi, A. (2009). Drying-induced stresses during convective and combined microwave and convective drying of saturated porous media. Drying Technology, 27(7–8), 851–856. https://doi.org/10.1080/07373930902988122
Mihoubi, D., Zagrouba, F., Vaxelaire, J., Bellagi, A., & Roques, M. (2004). Transfer phenomena during the drying of a shrinkable product: modeling and simulation. Drying Technology, 22(1–2), 91–109. https://doi.org/10.1081/DRT-120028216
Osepchuk, J. M. (2002). Microwave power applications. IEEE Transactions on Microwave Theory and Techniques, 50(3), 975–985. https://doi.org/10.1109/22.989980
Pereira A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. Editora UAB/NTE/UFSM, Santa Maria/RS. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisa-Cientifica.pdf?sequence=1.
Reed, J. S. (1995). Principles of ceramics processing. New York, USA: John Wiley & Sons, Inc.
Santos, G. M. (2001). Estudo do comportamento térmico de um forno túnel aplicado à indústria de cerâmica vermelha.
Shiraki, Y. (1955a). Studies on Clay–Water System.(II-1) Plasticity of Clay. Journal of the Ceramic Association of Japan, 63(709), 233–243.
Shiraki, Y. (1955b). Studies on Clay–Water System.(II-3) Theoretical Consideration to the Visco-Elastic Property of Clay–Water Masses. Journal of the Ceramic Association of Japan, 63(712), 421–429.
Shiraki, Y., & Fukuura, Y. (1955). Studies on Clay–Water System.(II-4) Plastic Deformation of Nearly Dry Clay, and Relations between Water Content and Modulus of Rupture and Modulus of Elasticity. Journal of the Ceramic Association of Japan, 63(714), 527–532.
Shiraki, Y., & Komaki, T. (1955). Studies on Clay–Water System.(I-12) Visco-Elastic Properties of Clay Paste. Journal of the Ceramic Association of Japan, 63(708), 194–197.
Silva, V. S., Delgado, J., Barbosa de Lima, W. M. P., & Barbosa de Lima, A. G. (2016). Heat and mass transfer in holed ceramic material using lumped model. Diffusion Foundations, 7, 30–52. https://doi.org/10.4028/www.scientific.net/DF.7.30
Su, S.-L. (1997). Modeling of multi-phase moisture transfer and induced stress in drying clay bricks. Applied Clay Science, 12(3), 189–207. https://doi.org/10.1016/S0169-1317(97)00003-3
Teixeira de Brito, M. K., Teixeira de Almeida, D. B., Barbosa de Lima, A. G., Almeida Rocha, L., Santana de Lima, E., & Barbosa de Oliveira, V. A. (2016). Heat and Mass Transfer during Drying of Clay Ceramic Materials: A Three-Dimensional Analytical Study. Diffusion Foundations, 10, 93–106. https://doi.org/10.4028/www.scientific.net/DF.10.93
Van der Zanden, A. J. J., Schoenmakers, A. M. E., & Kerkhof, P. (1996a). Isothermal vapour and liquid transport inside clay during drying. Drying Technology, 14(3–4), 647–676. https://doi.org/10.1080/07373939608917119
Van Der Zanden, A. J. J., Turner, I., & Mujumdar, A. S. (1996b). Modelling and simulating simultaneous liquid and vapour transport in partially saturated porous materials. Mathematical Modelling and Numerical Techniques in Drying Technology/Eds. Turner & Mujumdar, 157–177.
Vandiver, P. B. (1990). Venuses and wolverines: the origins of ceramic technology, ca. 26 000 B. P. Ceramics and Civilization, 5 Pp., 13.
Zagrouba, F., Mihoubi, D., & Bellagi, A. (2002). Drying of clay. II Rheological modelisation and simulation of physical phenomena. Drying Technology, 20(10), 1895–1917. https://doi.org/10.1081/DRT-120015575
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Ricardo Soares Gomez; Hortência Luma Fernandes Magalhães ; Túlio Rafael Nascimento Porto ; Elisiane Santana de Lima ; Renato Alexandre Costa de Santana; Kelly Cristiane Gomes; Wanderson Magno Paiva Barbosa de Lima; Antonio Gilson Barbosa de Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.