Drying of clay ceramic materials with complex shape: a theoretical analysis using the lumped capacitance method
DOI:
https://doi.org/10.33448/rsd-v9i11.10362Keywords:
Drying; Heating; Analytical; Lumped analysis; Ceramic materials.Abstract
The need for investment in improving quality, productivity, and low cost and process energy savings is a growing concern of the ceramist sector. The drying process consists in moisture removal from a material through heating, involving high energy consumption. In this sense, this work aim to study theoretically the drying of hollow ceramic solids with arbitrary shape using a phenomenological mathematical modeling based on the lumped capacitance method. Kinetic results of mass loss and heating of the hollow solid under different operating conditions are presented and analyzed. It was observed that the loss of moisture occurs at a slower rate than the heating rate of the material, and that the shape of the solid and its area / volume relationships strongly affect the heat and mass transport phenomena and that, depending on the intensity, can cause structural damages as cracks, deformations, warping and loss of the product.
References
Almeida, G. S. (2009). Simulação e Experimentação da Secagem de Cerâmica Vermelha em Sistemas Térmicos Industriais. Tese de Doutorado em Engenharia de Processos, Universidade Federal de Campina Grande, Campina Grande. Obtido de http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/11369
da Silva Almeida, G., da Silva, J. B., e Silva, C. J., Swarnakar, R., de Araújo Neves, G., & de Lima, A. G. B. (2013). Heat and mass transport in an industrial tunnel dryer: modeling and simulation applied to hollow bricks. Applied Thermal Engineering, 55(1-2), 78-86. https://doi.org/10.1016/j.applthermaleng.2013.02.042
Augier, F., Coumans, W. J., Hugget, A., & Kaasschieter, E. F. (2002). On the risk of cracking in clay drying. Chemical Engineering Journal, 86(1-2), 133-138. https://doi.org/10.1016/S1385-8947(01)00279-0
Callister Jr, W. D., & Rethwisch, D. G. (2008). Fundamentals of materials science and engineering: an integrated approach. New York, USA: John Wiley & Sons, Inc.
Cadé, M. A., Nascimento, J. J. S., & Lima, A. G. B. (2005). Secagem de tijolos cerâmicos
vazados: uma aproximação por volumes finitos. Revista Matéria, 10(3), 443–453.
Farias, V. O., Pereira Silva, W., Silva e Silva, C. M. D. P., & de Lima, A. G. B. (2012). Three-dimensional diffusion in arbitrary domain using generalized coordinates for the boundary condition of the first kind: application in drying. Defect and Diffusion Forum, 326-328, 120-125. https://doi.org/10.4028/www.scientific.net/DDF.326-328.120
Lima, L. D. A., Silva, J. B., & Lima, A. G. (2003). Transferência de calor e massa durante a secagem de sólidos com forma arbitrária: uma abordagem concentrada. Engenharia agrícola, 23(1), 150-162.
Lima, E. S., Lima, W. M. P. B., Lima, A. G. B., Farias Neto, S. R., Silva, E. G., & Oliveira, V. A. B. (2018). Advanced Study to Heat and Mass Transfer in Arbitrary Shape Porous Materials: Foundations, Phenomenological Lumped Modeling and Applications. In In: Delgado J., Barbosa de Lima A. (Eds.) Transport Phenomena in Multiphase Systems. Advanced Structured Materials (vol. 93, pp. 181-217). Springer, Cham. https://doi.org/10.1007/978-3-319-91062-8_6
Musielak, G., & Śliwa, T. (2012). Fracturing of clay during drying: Modelling and numerical simulation. Transport in Porous Media, 95(2), 465-481. https://doi.org/10.1007/s11242-012-0055-4
Nascimento, J. J. S., de Lima, A. G. B., Teruel, B. J., & Belo, F. A. (2006). Heat and Mass Transfer with Shrinkage During the Drying of Ceramic Bricks. Información Tecnológica, 17(6), 125.
Nicolau, V.P., Lehmkuhl, W.A., Kawaguti, W.M., Dadam, A.P., Hartke, R.F., Jahn, T.G. (2004). Análise Experimental de um Secador contínuo Utilizado na Indústria de Cerâmica Vermelha. In: III Congresso Nacional de Engenharia Mecânica, pp. 1-10, Belém, Brasil.
Oliveira, A. D., Montedo, O. R. K., Pizete, J., & Casagrande, M. (2000). Matérias-primas empregadas na fabricação de tijolos e blocos de construção: características e influência sobre as propriedades do produto final. Cerâmica Informação, 10, 57-55.
Pereira A.S.; Shitsuka, D. M.; Parreira, F. J.; Shitsuka, R. (2018). Metodologia da pesquisa científica. Editora UAB/NTE/UFSM, Santa Maria/RS. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Silva, J. B. (2009). Simulação e experimentação da secagem de tijolos cerâmicos vazados. Tese de Doutorado em Engenharia de Processos, Universidade Federal de Campina Grande, Campina Grande. Obtido de http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1654
Silva, J. B., Almeida, G. S., Lima, W. C. P. B., Neves, G. A., & de Lima, A. G. B. (2011). Heat and Mass Diffusion Including Shrinkage and Hygrothermal Stress during Drying of Holed Ceramics Bricks, Defect and Diffusion Forum, 312-315, 971-976. https://doi.org/10.4028/www.scientific.net/DDF.312-315.971
Su, S. L. (1997). Modeling of multi-phase moisture transfer and induced stress in drying clay bricks. Applied Clay Science, 12(3), 189-207. https://doi.org/10.1016/S0169-1317(97)00003-3
Silva, J. B., Almeida, G. S., Neves, G. A., Lima, W. C. P. B., Farias Neto, S. R., & Lima, A. G. B. (2012). Heat and mass transfer and volume variations during drying of industrial ceramic bricks: an experimental investigation. Defect and Diffusion Forum, 326-328, 267-272. https://doi.org/10.4028/www.scientific.net/DDF.326-328.267
Silva, W. P., Farias, V. S. O., Neves, G. A., & Lima, A. G. B. (2012). Modeling of water transport in roof tiles by removal of moisture at isothermal conditions. Heat and Mass Transfer, 48(5), 809-821. https://doi.org/10.1007/s00231-011-0931-4
Silva, V. S. (2016). Transferência de calor e massa em materiais com forma complexa via método da análise concentrada. Estudo de caso: secagem de materiais cerâmicos. Tese de Doutorado em Engenharia de Processos, Universidade Federal de Campina Grande, Campina Grande. Obtido de http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/930
Silva, V. S., Delgado, J. M. P. Q., Lima, W. M., & Lima, A. G. B. (2016). Heat and mass transfer in holed ceramic material using lumped model. Diffusion Foundations, 7, 30-52. https://doi.org/10.4028/www.scientific.net/df.7.30
Silva, W. P., Silva, C. M. D. P., Silva, L. D., & Farias, V. S. O. (2013). Drying of clay slabs: Experimental determination and prediction by two-dimensional diffusion models. Ceramics International, 39(7), 7911-7919. https://doi.org/10.1016/j.ceramint.2013.03.053
Sander, A., Skansi, D., & Bolf, N. (2003). Heat and mass transfer models in convection drying of clay slabs. Ceramics International, 29(6), 641-653. https://doi.org/10.1016/S0272-8842(02)00212-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Wanderson Magno Paiva Barbosa de Lima; Eduarda Holanda Silva; Elisiane Santana de Lima ; Ricardo Soares Gomez; Hortência Luma Fernandes Magalhães; Stephane Katherine Barbosa Moura da Silva; Túlio Rafael Nascimento Porto; Antonio Gilson Barbosa de Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.