Are lipid profiles, the concentration of calories, sodium and human milk water suitable to be offered to dehydrated neonate?
DOI:
https://doi.org/10.33448/rsd-v9i11.10528Keywords:
Human milk; Lipid profile; Calories; Sodium; Water; Dehydrated neonate.Abstract
This study was conducted to analyze the lipid, caloric, sodium and water in colostrum, transitional milk and mature milk profile to assess whether the different phases of human milk are suitable to be offered to dehydrated term infant. A cross-sectional and quantitative design was chosen, using 44 human milk samples donated to the Human Milk Bank. As inclusion criteria, were selected samples of donors who exclusively breastfed. To evaluate the lipid profiles pools of the three phases were prepared, which were analyzed with the aid of electrospray ionization source mass spectrometry. Calorie, moisture and sodium analyzes were performed on individual samples using official AOAC methodologies. Lipid profiles indicated that pools may have important fatty acids that make up the triglycerides present in human milk lipids. The levels of sodium when evaluated individually varied significantly and in most samples were high when compared to the reference values. The average moisture content of mature milk was higher when compared to the other phases, which presented higher sodium content and lower moisture content (p<0.05). The statistical analysis by PCA separated the samples stood out in relation to the content of this mineral. The lipid profiles indicate the presence of essential fatty acids from the omega-6 and 3 families, important for the neurological development of neonates. The average sodium content found in mature milk is within the appropriate range for dehydrated neonate.
References
AOAC - Association of Official Analytical Chemists. 2000. Official Methods of Analysis of the Association of Official Analytical Chemists. (17a ed.), Gaithersburg: AOAC.
AOAC – Association of Official Analytical Chemists. 2005. Official methods of analysis of the Association of Official Analytical Chemists. (18a ed.), Gaithersburg: AOAC.
Aprile, M. D. M. (2006). Crescimento de recém-nascidos de muito baixo peso alimentados com leite de banco de leite humano selecionado segundo o valor calórico e proteico (Doctoral dissertation, Universidade de São Paulo). Recuperado de https://www.teses.usp.br/teses/disponiveis/5/5141/tde-26012007-171556/en.php.
Brasil. Ministério da Saúde. Atenção à saúde do recém-nascido: guia para os profissionais de saúde, cuidados gerais. Brasília, (2a ed.), 2, 194. Recuperado de http://bvsms.saude.gov.br/bvs/publicacoes/atencao_saude_recem_nascido_v1.pdf.
Bruxel, R., & Sica, C. D. A. (2019). Análise de proteina e micronutrientes em amostra de leite humano. RBONE-Revista Brasileira De Obesidade, Nutrição E Emagrecimento, 13(78), 194-201. Recuperado de http://www.rbone.com.br/index.php/rbone/article/view/909/662.
da Silveira, R., Vágula, J. M., de Lima Figueiredo, I., Claus, T., Galuch, M. B., Junior, O. O. S., & Visentainer, J. V. (2017). Rapid methodology via mass spectrometry to quantify addition of soybean oil in extra virgin olive oil: a comparison with traditional methods adopted by food industry to identify fraud. Food Research International, 102, 43-50. https://doi.org/10.1016/j.foodres.2017.09.076.
DIETBOX. Software para Planejamento Dietético Dietbox versão 2.0. 2015. Recuperado de https://dietbox.me/pt-BR/.
Floris, L. M., Stahl, B., Abrahamse-Berkeveld, M., & Teller, I. C. (2019). Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins, Leukotrienes and Essential Fatty Acids, 102023. https://doi.org/10.1016/j.plefa.2019.102023.
Folch, J., Lees, M., & Stanley, G. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of biological chemistry, 226(1), 497-509.
Guimarães, V. A., de Novak, J. A. G., & Reis, F. (2016). Normas Técnicas REDE BLH-BR para Bancos de Leite Humano: recursos humanos. Recuperado de https://pesquisa.bvsalud.org/portal/resource/pt/lis-LISBR1.1-40108.
Harding, J. E. et al. Advances in nutrition of the newborn infant. (2017). The Lancet, 389 (10079), 1660-1668. https://doi.org/10.1016/S0140-6736(17)30552-4.
Léké, A., Grognet, S., Deforceville, M., Goudjil, S., Chazal, C., Kongolo, G., & Biendo, M. (2019). Macronutrient composition in human milk from mothers of preterm and term neonates is highly variable during the lactation period. Clinical Nutrition Experimental, 26, 59-72. https://doi.org/10.1016/j.yclnex.2019.03.004.
Locks, L. M., Manji, K. P., McDonald, C. M., Kupka, R., Kisenge, R., Aboud, S., & Duggan, C. P. (2016). Effect of zinc and multivitamin supplementation on the growth of Tanzanian children aged 6–84 wk: a randomized, placebo-controlled, double-blind trial. The American Journal of Clinical Nutrition, 103(3), 910-918. https://doi.org/10.3945/ajcn.115.120055.
Lucas, A., Gibbs, J. A., Lyster, R. J. L., & Baum, J. D. (1978). Creamatocrit: simple clinical technique for estimating fat concentration and energy value of human milk. Br med J, 1(6119), 1018-1020. https://doi.org/10.1136/bmj.1.6119.1018.
Moraes, P. S. D., Oliveira, M. M. B. D., & Dalmas, J. C. (2013). Perfil calórico de la leche pasteurizada en el banco de leche humana de un hospital escuela en Londrina, Paraná, Brasil. Revista Paulista de Pediatria, 31(1), 46-50. http://dx.doi.org/10.1590/S0103-05822013000100008.
Morgano, M. A., Souza, L. A., M Neto, J., & Rondó, P. H. (2005). Composição mineral do leite materno de bancos de leite. Food Science and Technology, 25(4), 819-824. https://doi.org/10.1590/S0101-20612005000400031.
Rydlewski, A. A. (2020). Métodos analíticos utilizados para a determinação de lipídios em leite humano: uma revisão. Revista Virtual de Química, 12(1). https://doi.org/10.21577/1984-6835.20200013.
Sahi, A. K., Varshney, N., Poddar, S., Vajanthri, K. Y., & Mahto, S. K. (2019). Optimizing a detection method for estimating polyunsaturated fatty acid in human milk based on colorimetric sensors. Materials Science for Energy Technologies, 2(3), 624-628. https://doi.org/10.1016/j.mset.2019.07.001.
Sharma, D., Shastri, S., Farahbakhsh, N., & Sharma, P. (2016). Intrauterine growth restriction–part 1. The Journal of Maternal-Fetal & Neonatal Medicine, 29(24), 3977-3987. https://doi.org/10.3109/14767058.2016.1152249.
Silva, R. C. D., Escobedo, J. P., Gioielli, L. A., Quintal, V. S., Ibidi, S. M., & Albuquerque, E. M. (2007). Composição centesimal do leite humano e caracterização das propriedades físico-químicas de sua gordura. Química Nova, 30(7), 1535-1538. http://dx.doi.org/10.1590/S0100-40422007000700007
Sírio, M. A. D. O., Silva, M. E., Paula, H. D., Passos, M. C., & Souza Sobrinho, A. O. D. (2007). Clinical and epidemiological determinants of sodium and potassium levels in the colostrum of nursing mothers with and without hypertension in Brazil. Cadernos de saude publica, 23(9), 2205-2214. http://dx.doi.org/10.1590/S0102-311X2007000900028.
Soares, F. V. M., Abranches, A. D., Méio, M. D. B. B., Junior, S. C. G., Villela, L. D., & Moreira, M. E. L. (2019). Differences in energy expenditure in human donor milk versus formula milk in preterm newborns: A crossover study. Nutrition, 66, 1-4. https://doi.org/10.1016/j.nut.2019.04.002.
Souza, A. I. D. (2004). Nutrição em obstetrícia e pediatria. Revista Brasileira de Saúde Materno Infantil, 4(2), 203-204. https://doi.org/10.1590/S1519-38292004000200011.
TEAM, RStudio et al. RStudio: integrated development for R. RStudio, Inc., Boston, MA. V. 42, 14, 2015. Recuperado de http://www.rstudio.com.
US Department of Agriculture. Agricultural Research Service. (2001). USDA Nutrient Database for Standard Reference, Release 14: Nutrient Data Laboratory Home Page. US Department of Agriculture, Agricultural Research Service.
Wack, R. P., Lien, E. L., Taft, D., & Roscelli, J. D. (1997). Electrolyte composition of human breast milk beyond the early postpartum period. Nutrition, 13(9), 774-777. https://doi.org/10.1016/S0899-9007(97)00187-1.
Wang, L., Li, X., Liu, L., da Zhang, H., Zhang, Y., Chang, Y. H., & Zhu, Q. P. (2020). Comparative lipidomics analysis of human, bovine and caprine milk by UHPLC-Q-TOF-MS. Food chemistry, 310, 125865. https://doi.org/10.1016/j.foodchem.2019.125865.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Adriela Albino Rydlewski; Luciana Pelissari Manin; Christyna Beatriz Genovez Tavares; Meliana Gisleine Paula; Eloize Silva Alves; Jesui Vergilio Visentainer
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.