Water deficit induces changes in grown, oxidative metabolism and phenylpropanoids biosynthesis in Ocimum basilicum L.

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10590

Keywords:

Aromatic plant; Abiotic stress; Essential oil; Secondary metabolites.

Abstract

Numerous physiological and biochemical changes occur when plants are subject to water stress. Therefore, the aim of this study was to evaluate grown, antioxidant response, yield and composition of essential oil of basil plants (Ocimum basilicum L.) when subject to water deficit. The experiment was conducted in a greenhouse and supplied with three water regimes: 100-90% (control), 70-60% (moderate stress), 40-30% (severe stress) of the field capacity for 50 days. Plants subjected to severe water stress showed significant reductions in the development of the shoot, as fresh mass and height. The relative water content in leaves decreased with increasing severity of stress. We observed an increase in the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) in plants subject to water deficit. Plants subject to moderate and severe stress had a higher oil essential yield, besides changing their chemical composition. A total of 54 compounds were identified in the essential oil from the basil leaves. The phenylpropanoids increased with water deficit and may constitute a secondary antioxidant system, which may assist the primary antioxidant defense system, in order to maintain the levels of hydrogen peroxide in the cells at sub-lethal concentrations to basil plants.

References

Abideen, Z., Koyro, H.‐W., Huchzermeyer, B., Ansari, R., Zulfiqar, F., Gul, B. (2020). Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biology, 22, 259-266.

Adams, R. P. (2007). Identification of Essential oil Components by Gas Chromatography/Mass Spectrometry. (4a ed.) Carol Stream, Illinois: Allured Publishing Corporation.

Anderson, M. D., Prasad, T. K., Stewart, C. R. (1995). Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, 109 (4), 1247-1257.

Baghalian, K., Abdoshah, S., Khalighi-Sigaroodi, F., Paknejad, F. (2011). Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiology and Biochemistry, 49 (2), 201-207.

Bettaieb, I., Zakhama, N., Aidi-Wannes, W., Kchouk, M. E., Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia Horticulturae, 120, 271-275.

Blanch, J. S., Peñuelas, J., Llusià, J. (2007). Sensitivity of terpene emissions to drought and fertilization in terpene‐storing Pinus halepensis and non‐storing Quercus ilex. Physiologia Plantarum, 131 (2), 211-225.

Brunetti, C., Guidi, L., Sebastiani, F., Tattini, M. (2015). Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environmental and Experimental Botany, 119, 54–62.

Borges, I. B., Cardoso, B. K., Silva, E. S., de Oliveira, J. S., da Silva, R. F., de Rezende, C. M., Gonçalves, J. E., Junior, R. P., de Souza, S. G. H., Gazim, Z. C. (2016). Evaluation of performance and chemical composition of Petroselinum crispum essential oil under different conditions of water deficit. African Journal of Agricultural Research, 11 (6), 480–486.

Brasil. (2010). Agência Nacional de Vigilancia Sanitária (ANVISA). Farmacopeia Brasileira. (5a ed), Anvisa, Brasília.

De Abreu, I. N., & Mazzafera, P. (2005). Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiology and Biochemistry, 43, 241-248.

Dudareva, N., Klempien, A., Muhlemann, J. K., Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 98, 16–32.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29 (1), 185-212.

Fathi, E., Majdi, M., Dastan, D., Maroufi, A. (2019). The spatio-temporal expression of some genes involved in the biosynthetic pathways of terpenes/phenylpropanoids in yarrow (Achillea millefolium). Plant Physiology and Biochemistry, 142, 43-52.

Giannopolitis, I., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59 (2), 309-314.

Jaleel, C. A. P., Manivannan, A., Wahid, M., Farooq, R., Somasundaram, R., Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11, 100-105.

Havir, E. A. & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84 (2), 450-455.

Hoagland, D. R., & Arnon, D. I. (1950). The water culture method for growing plants without soils. California Agricultural Experiment Station, 347, 1-32.

Laxa, M., Liebthal, M., Telman, W., Chibani, K., Dietz, K.-J. (2019). The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants, 8, 94.

Lung, I., Soran, M. L., Ocsana, O., Mihail R. C. T., Ülo. N., Lucian. C. (2016). Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum. Science of The Total Environment, 569-570, 489-495.

Luz, J. M. Q., Morais, T. P. S., Blanck, A. F., Sodré, A. C. B., Oliveira, G. S. (2009). Teor, rendimento e composição química do óleo essencial de manjericão sob doses de cama de frango. Horticultura Brasileira, 27 (3), 349-353.

Munné-Bosch, S., & Peñuelas, J. (2003). Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants, Planta, 217 (5), 758-756.

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22 (5), 867-880.

Padalia, R. C., Verma, R. S., Upadhyay, R. K., Chauhan, A., Singh, V. R. (2017). Productivity and essential oil quality assessment of promising accessions of Ocimum basilicum L. from north India. Industrial Crops and Products, (97), 79-86.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM, NTE.

Petropoulos, S. A., Daferera, D., Polissiou, M. G., Passam. H. C. (2008). The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Scientia Horticulturae, 115, 393-397.

Kaouthar, F., Ameny, F. K., Yosra, K., Walid, S., Ali, G., Faiçal, B. (2016). Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses. Journal of Plant Physiology, 198, 56-68.

Rezaie, R., Abdollahi Mandoulakani, B. A., Fattahi, M. (2020). Cold stress changes antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum L. Scientific Reports, 10, 5290.

Rouached, A., Slama, I., Zorrig, W., Jdey, A., Cukier, C., Rabhi, M., Talbi, O., Limami, A.M., Abdelly, C. (2013). Differential performance of two forage species: Medicago truncatula and Sulla carnosa under water deficit stress and recovery. Crop Pasture Science, 64 (3), 254-264.

Scandalios, J. G. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38 (7), 995-1014.

Schonfeld, M. A., Johnson, R. C., Carwer, B. F., Mornhinweg, D.W. (1988). Water relations in winter wheat as drought resistance indicators. Crop Science, 28, 526-531.

Silva, F. A. S., & Azevedo, C. A. V. (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Jounal of Agricultural Reserch, 11(39), 3733-3740.

STATSOFT. (2017). Statistica for Windows [Computer program manual]. 13.3. Tulsa: StatSoft,

Velikova, V., Brunetti, C., Tattini, M., Doneva, D., Ahrar, M., Tsonev, T., Stefanova, M., Ganeva, T., Gori, A., Ferrini, F., Varotto, C., Loreto, F. (2016). Physiological significance of isoprenoids and phenylpropanoids in drought response of Arundinoideae species with contrasting habitats and metabolism. Plant Cell and Environment, 39, 2185-2197.

Velikova, V., Várkonyi, Z., Szabó, M., Maslenkova, L., Nogues, I., Kovács, L., Peeva, V., Busheva, M., Garab, G., Sharkey, T. D., Loreto, F. (2011). Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiology, 157, 905-916.

Vickers, C. E., Gershenzon, J., Lerdau, M. T., Loreto, F. (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 5, 283-291.

Published

02/12/2020

How to Cite

NOVELLO, P. F. A. M. .; BONACINA , C.; STRACIERI, J.; CAMPOS , C. F. de A. A. .; GONÇALVES , J. E. .; GAZIM , Z. C. .; SOUZA, S. G. H. de . Water deficit induces changes in grown, oxidative metabolism and phenylpropanoids biosynthesis in Ocimum basilicum L. Research, Society and Development, [S. l.], v. 9, n. 11, p. e74591110590, 2020. DOI: 10.33448/rsd-v9i11.10590. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10590. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences