El déficit hídrico altera el crecimiento, el metabolismo oxidativo y la biosíntesis de fenilpropanoides en Ocimum basilicum L.

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.10590

Palabras clave:

Planta aromática; Estrés abiótico; Aceite esencial; Metabolitos secundarios.

Resumen

Los cambios fisiológicos y bioquímicos ocurren cuando las plantas están sujetas a estrés hídrico. Por tanto, el objetivo de este trabajo fue evaluar el crecimiento, la respuesta antioxidante, el rendimiento y la composición del aceite esencial (OE) de albahaca (Ocimum basilicum L.) sometido a déficit hídrico. El experimento se llevó a cabo en un invernadero bajo tres regímenes de agua: 100-90% (control), 70-60% (estrés moderado), 40-30% (estrés severo) de la capacidad de campo durante 50 días. Las plantas sometidas a estrés hídrico severo mostraron reducciones significativas en peso fresco y altura. El contenido relativo de agua en las hojas disminuyó al aumentar la severidad del estrés. Se observó un aumento de la actividad enzimática: superóxido dismutasa (SOD), ascorbato peroxidasa (APX) y catalasa (CAT) en plantas sometidas a déficit hídrico. Las plantas sometidas a estrés moderado y seroideo presentaron mayor rendimiento de OE, además de cambiar su composición química. Se identificaron un total de 54 compuestos en el OE de las hojas de albahaca. Los fenilpropanoides aumentan con el déficit hídrico y pueden constituir un sistema antioxidante secundario, que puede ayudar al sistema de defensa antioxidante primario, para mantener los niveles de peróxido de hidrógeno en las células en concentraciones subletales para las plantas de albahaca.

Citas

Abideen, Z., Koyro, H.‐W., Huchzermeyer, B., Ansari, R., Zulfiqar, F., Gul, B. (2020). Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biology, 22, 259-266.

Adams, R. P. (2007). Identification of Essential oil Components by Gas Chromatography/Mass Spectrometry. (4a ed.) Carol Stream, Illinois: Allured Publishing Corporation.

Anderson, M. D., Prasad, T. K., Stewart, C. R. (1995). Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, 109 (4), 1247-1257.

Baghalian, K., Abdoshah, S., Khalighi-Sigaroodi, F., Paknejad, F. (2011). Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiology and Biochemistry, 49 (2), 201-207.

Bettaieb, I., Zakhama, N., Aidi-Wannes, W., Kchouk, M. E., Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia Horticulturae, 120, 271-275.

Blanch, J. S., Peñuelas, J., Llusià, J. (2007). Sensitivity of terpene emissions to drought and fertilization in terpene‐storing Pinus halepensis and non‐storing Quercus ilex. Physiologia Plantarum, 131 (2), 211-225.

Brunetti, C., Guidi, L., Sebastiani, F., Tattini, M. (2015). Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environmental and Experimental Botany, 119, 54–62.

Borges, I. B., Cardoso, B. K., Silva, E. S., de Oliveira, J. S., da Silva, R. F., de Rezende, C. M., Gonçalves, J. E., Junior, R. P., de Souza, S. G. H., Gazim, Z. C. (2016). Evaluation of performance and chemical composition of Petroselinum crispum essential oil under different conditions of water deficit. African Journal of Agricultural Research, 11 (6), 480–486.

Brasil. (2010). Agência Nacional de Vigilancia Sanitária (ANVISA). Farmacopeia Brasileira. (5a ed), Anvisa, Brasília.

De Abreu, I. N., & Mazzafera, P. (2005). Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiology and Biochemistry, 43, 241-248.

Dudareva, N., Klempien, A., Muhlemann, J. K., Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 98, 16–32.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29 (1), 185-212.

Fathi, E., Majdi, M., Dastan, D., Maroufi, A. (2019). The spatio-temporal expression of some genes involved in the biosynthetic pathways of terpenes/phenylpropanoids in yarrow (Achillea millefolium). Plant Physiology and Biochemistry, 142, 43-52.

Giannopolitis, I., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59 (2), 309-314.

Jaleel, C. A. P., Manivannan, A., Wahid, M., Farooq, R., Somasundaram, R., Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11, 100-105.

Havir, E. A. & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84 (2), 450-455.

Hoagland, D. R., & Arnon, D. I. (1950). The water culture method for growing plants without soils. California Agricultural Experiment Station, 347, 1-32.

Laxa, M., Liebthal, M., Telman, W., Chibani, K., Dietz, K.-J. (2019). The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants, 8, 94.

Lung, I., Soran, M. L., Ocsana, O., Mihail R. C. T., Ülo. N., Lucian. C. (2016). Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum. Science of The Total Environment, 569-570, 489-495.

Luz, J. M. Q., Morais, T. P. S., Blanck, A. F., Sodré, A. C. B., Oliveira, G. S. (2009). Teor, rendimento e composição química do óleo essencial de manjericão sob doses de cama de frango. Horticultura Brasileira, 27 (3), 349-353.

Munné-Bosch, S., & Peñuelas, J. (2003). Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants, Planta, 217 (5), 758-756.

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22 (5), 867-880.

Padalia, R. C., Verma, R. S., Upadhyay, R. K., Chauhan, A., Singh, V. R. (2017). Productivity and essential oil quality assessment of promising accessions of Ocimum basilicum L. from north India. Industrial Crops and Products, (97), 79-86.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM, NTE.

Petropoulos, S. A., Daferera, D., Polissiou, M. G., Passam. H. C. (2008). The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Scientia Horticulturae, 115, 393-397.

Kaouthar, F., Ameny, F. K., Yosra, K., Walid, S., Ali, G., Faiçal, B. (2016). Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses. Journal of Plant Physiology, 198, 56-68.

Rezaie, R., Abdollahi Mandoulakani, B. A., Fattahi, M. (2020). Cold stress changes antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum L. Scientific Reports, 10, 5290.

Rouached, A., Slama, I., Zorrig, W., Jdey, A., Cukier, C., Rabhi, M., Talbi, O., Limami, A.M., Abdelly, C. (2013). Differential performance of two forage species: Medicago truncatula and Sulla carnosa under water deficit stress and recovery. Crop Pasture Science, 64 (3), 254-264.

Scandalios, J. G. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38 (7), 995-1014.

Schonfeld, M. A., Johnson, R. C., Carwer, B. F., Mornhinweg, D.W. (1988). Water relations in winter wheat as drought resistance indicators. Crop Science, 28, 526-531.

Silva, F. A. S., & Azevedo, C. A. V. (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Jounal of Agricultural Reserch, 11(39), 3733-3740.

STATSOFT. (2017). Statistica for Windows [Computer program manual]. 13.3. Tulsa: StatSoft,

Velikova, V., Brunetti, C., Tattini, M., Doneva, D., Ahrar, M., Tsonev, T., Stefanova, M., Ganeva, T., Gori, A., Ferrini, F., Varotto, C., Loreto, F. (2016). Physiological significance of isoprenoids and phenylpropanoids in drought response of Arundinoideae species with contrasting habitats and metabolism. Plant Cell and Environment, 39, 2185-2197.

Velikova, V., Várkonyi, Z., Szabó, M., Maslenkova, L., Nogues, I., Kovács, L., Peeva, V., Busheva, M., Garab, G., Sharkey, T. D., Loreto, F. (2011). Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiology, 157, 905-916.

Vickers, C. E., Gershenzon, J., Lerdau, M. T., Loreto, F. (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 5, 283-291.

Publicado

02/12/2020

Cómo citar

NOVELLO, P. F. A. M. .; BONACINA , C.; STRACIERI, J.; CAMPOS , C. F. de A. A. .; GONÇALVES , J. E. .; GAZIM , Z. C. .; SOUZA, S. G. H. de . El déficit hídrico altera el crecimiento, el metabolismo oxidativo y la biosíntesis de fenilpropanoides en Ocimum basilicum L. Research, Society and Development, [S. l.], v. 9, n. 11, p. e74591110590, 2020. DOI: 10.33448/rsd-v9i11.10590. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10590. Acesso em: 8 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas