Use of selenium to increase antioxidant activity and water use efficiency in arugula (Eruca vesicaria ssp. Sativa) exposed to drought stress
DOI:
https://doi.org/10.33448/rsd-v9i12.10670Keywords:
Eruca sativa; Biostimulant; Reactive oxygen species; Environmental stress.Abstract
Environmental stress can directly or indirectly affect the formation of reactive oxygen species. Oxidative stress damages cell constituents such as carbohydrates, lipids, nucleic acids and proteins, reducing plant growth, respiration and photosynthesis. In recent decades, evidence has shown that small doses of selenium act as an antioxidant and plant biostimulant, promoting growth and improving resistance to abiotic stress such as drought. As such, the aim of this study was to assess the effect of selenium foliar feeding (0, 150 and 300 ppm) on the antioxidant activity, water use efficiency and yield traits of arugula grown with and without drought stress (50% and 100% ETc) in a protected environment. A randomized block design was used, with a 2x3 factorial scheme and four repetitions. Antioxidant activity increased in treatments with 150 ppm of fertilizer and exposure to drought stress. Plants in these treatments obtained higher water use efficiency, yield and leaf area values than those not submitted to drought stress.
References
Ahmad, R., Waraich, E. A., Nawaz, F., Ashraf, M. Y., & Khalid, M. (2016). Selenium (Se) improves drought tolerance in crop plants - a myth or fact? Journal of the Science of Food and Agriculture, 96(2), 372–380. https://doi.org/10.1002/jsfa.7231
Bachiega, P., Salgado, J. M., de Carvalho, J. E., Ruiz, A. L. T. G., Schwarz, K., Tezotto, T., & Morzelle, M. C. (2016). Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chemistry, 190, 771–776. https://doi.org/10.1016/j.foodchem.2015.06.024
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Bybordi, A. (2016). Influence of Zeolite, Selenium and Silicon upon Some Agronomic and Physiologic Characteristics of Canola Grown under Salinity. Communications in Soil Science and Plant Analysis, 47(7), 832–850. https://doi.org/10.1080/00103624.2016.1146898
Cabral, R. do C., Maekawa, S. C. E., Zuffo, A. M., & Steiner, F. (2020). Índices de seleção para identificar cultivares de soja tolerantes à seca. Research, Society and Development, 9(7), e259973812. https://doi.org/10.33448/rsd-v9i7.3812
Cartes, P., Gianfreda, L., & Mora, M. L. (2005). Uptake of Selenium and its Antioxidant Activity in Ryegrass When Applied as Selenate and Selenite Forms. Plant and Soil, 276(1–2), 359–367. https://doi.org/10.1007/s11104-005-5691-9
Cechin, I., Corniani, N., Fumis, T. de F., & Cataneo, A. C. (2010). Differential responses between mature and young leaves of sunflower plants to oxidative stress caused by water deficit. Ciência Rural, 40(6), 1290–1294. https://doi.org/10.1590/S0103-84782010000600008
Djanaguiraman, M., Devi, D. D., Shanker, A. K., Sheeba, J. A., & Bangarusamy, U. (2005). Selenium – an antioxidative protectant in soybean during senescence. Plant and Soil, 272(1–2), 77–86. https://doi.org/10.1007/s11104-004-4039-1
Feng, R., Wei, C., & Tu, S. (2013). The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany, 87, 58–68. https://doi.org/10.1016/j.envexpbot.2012.09.002
Ferreira, D. F. (2014). Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciencia e Agrotecnologia, 38(2), 109–112. https://doi.org/10.1590/S1413-70542014000200001
Freitas, E. M. de, Giovanelli, L. B., Delazari, F. T., Santos, M. L. dos, Pereira, S. B., & Silva, D. J. H. da. (2017). Arugula production as a function of irrigation depths and potassium fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(3), 197–202. https://doi.org/10.1590/1807-1929/agriambi.v21n3p197-202
Freitas, G. C. V., Lemos, R. de C. A. S., França, A. C. B., Santos, L. C. C. dos, Leão, S. M. L. M., & Nogueira, T. R. (2020). Efeitos da suplementação de selênio sobre a defesa antioxidante na Doença Renal Crônica. Research, Society and Development, 9(5), e189953247. https://doi.org/10.33448/rsd-v9i5.3247
Habibi, G., & Hajiboland, R. (2011). Comparison of Water Stress and uv Radiation Effects on Induction of Cam and Antioxidative Defense in the Succulent Rosularia elymaitica (Crassulaceae). Acta Biologica Cracoviensia Series Botanica, 53(2). https://doi.org/10.2478/v10182-011-0020-5
Hajiboland, R., Sadeghzadeh, N., & Sadeghzadeh, B. (2014). Effect of Se application on photosynthesis, osmolytes and water relations in two durum wheat (Triticum durum L.) genotypes under drought stress. Acta Agriculturae Slovenica, 103(2), 167–179. https://doi.org/10.14720/aas.2014.103.2.2
Hartikainen, H., Xue, T., & Piironen, V. (2000). Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant and Soil, 225(1–2), 193–200. https://doi.org/10.1023/A:1026512921026
Hu, Q., Xu, J., & Pang, G. (2003). Effect of Selenium on the Yield and Quality of Green Tea Leaves Harvested in Early Spring. Journal of Agricultural and Food Chemistry, 51(11), 3379–3381. https://doi.org/10.1021/jf0341417
Kumar, M., Bijo, A. J., Baghel, R. S., Reddy, C. R. K., & Jha, B. (2012). Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiology and Biochemistry, 51, 129–138. https://doi.org/10.1016/j.plaphy.2011.10.016
Malavolta, E., Vitti, G. C., & Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações (2°; Associação Brasileira para Pesquisa da Potassa e do Fosfato, ed.). Piracicaba.
Mckenzie, M., Lill, R., Trovole, S., & Brummell, D. (2015). Biofortification of fruit and vegetables with selenium. In V. R. Preedy (Ed.), Selenium: Chemistry, Analysis, Function and Effects (pp. 304–323). Royal Society of Chemistry.
Nawaz, F., Ahmad, R., Ashraf, M. Y., Waraich, E. A., & Khan, S. Z. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety, 113, 191–200. https://doi.org/10.1016/j.ecoenv.2014.12.003
Pennanen, A., Xue, T., & Hartikainen, H. (2002). Protective role of selenium in plant subjected to severe UV irradiation stress. Journal of Applied Botany, 76(1–2), 66–76.
Pilon-Smits, E. A. H., & Quinn, C. F. (2010). Selenium Metabolism in Plants. In Plant Cell Monographs (pp. 225–241). https://doi.org/10.1007/978-3-642-10613-2_10
Price, A. H., & Hendry, G. A. F. (1991). Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant, Cell and Environment, 14(5), 477–484. https://doi.org/10.1111/j.1365-3040.1991.tb01517.x
Ramos, S. J., Faquin, V., Guilherme, L. R. G., Castro, E. M., Ávila, F. W., Carvalho, G. S., … Oliveira, C. (2010). Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant, Soil and Environment, 56(No. 12), 584–588. https://doi.org/10.17221/113/2010-PSE
Reghin, M. Y., Otto, R. F., Olinik, J. R., & Jacoby, C. F. S. (2005). Efeito do espaçamento e do número de mudas por cova na produção de rúcula nas estações de outono e inverno. Ciência e Agrotecnologia, 29(5), 953–959. https://doi.org/10.1590/S1413-70542005000500006
Ríos, J. J., Rosales, M. A., Blasco, B., Cervilla, L. M., Romero, L., & Ruiz, J. M. (2008). Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Scientia Horticulturae, 116(3), 248–255. https://doi.org/10.1016/j.scienta.2008.01.008
Schiavon, M., Dall’Acqua, S., Mietto, A., Pilon-Smits, E. A. H., Sambo, P., Masi, A., & Malagoli, M. (2013). Selenium Fertilization Alters the Chemical Composition and Antioxidant Constituents of Tomato (Solanum lycopersicon L.). Journal of Agricultural and Food Chemistry, 61(44), 10542–10554. https://doi.org/10.1021/jf4031822
Seciu, A.-M., Oancea, A., Gaspar, A., Moldovan, L., Craciunescu, O., Stefan, L., … Georgescu, F. (2016). Water Use Efficiency on Cabbage and Cauliflower Treated with a New Biostimulant Composition. Agriculture and Agricultural Science Procedia, 10, 475–484. https://doi.org/10.1016/j.aaspro.2016.09.019
Singleton, V. L., Rossi Jr., J. A., & Rossi J A Jr. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158. https://doi.org/10.12691/ijebb-2-1-5
Tadina, N., Germ, M., Kreft, I., Breznik, B., & Gaberscik, A. (2007). Effects of water deficit and selenium on common buckwheat (Fagopyrum esculentum Moench.) plants. Photosynthetica, 45(3), 472–476. https://doi.org/10.1007/s11099-007-0080-7
Valadabadi, S. A., Shiranirad, A. H., & Farahani, H. A. (2010). Ecophysiological influences of zeolite and selenium on water deficit stress tolerance in different rapeseed cultivars. Journal of Ecology and the Natural Environment, 2(8), 154–159.
Vasco, A. N. do, Aguiar-Netto, A. de O., Silva-Mann, R., & Bastos, E. A. (2011). Irrigation Management in Real Time for Arugula Crop in Sergipe. Journal of Agricultural Science and Technology, B(1), 1161–1167.
Voet, D., & Voet, J. G. (2013). Bioquimica (4°). Porto Alegre: Artmed.
Xu, J., & Hu, Q. (2004). Effect of Foliar Application of Selenium on the Antioxidant Activity of Aqueous and Ethanolic Extracts of Selenium-Enriched Rice. Journal of Agricultural and Food Chemistry, 52(6), 1759–1763. https://doi.org/10.1021/jf0349836
Xu, J., Yang, F., Chen, L., Hu, Y., & Hu, Q. (2003). Effect of Selenium on Increasing the Antioxidant Activity of Tea Leaves Harvested during the Early Spring Tea Producing Season. Journal of Agricultural and Food Chemistry, 51(4), 1081–1084. https://doi.org/10.1021/jf020940y
Yao, X., Chu, J., & Wang, G. (2009). Effects of Selenium on Wheat Seedlings Under Drought Stress. Biological Trace Element Research, 130(3), 283–290. https://doi.org/10.1007/s12011-009-8328-7
Yu, F., Sheng, J., Xu, J., An, X., & Hu, Q. (2007). Antioxidant activities of crude tea polyphenols, polysaccharides and proteins of selenium-enriched tea and regular green tea. European Food Research and Technology, 225(5–6), 843–848. https://doi.org/10.1007/s00217-006-0490-y
Zhu, Q. Y., Hackman, R. M., Ensunsa, J. L., Holt, R. R., & Keen, C. L. (2002). Antioxidative activities of oolong tea. Journal of Agricultural and Food Chemistry, 50(23), 6929–6934. https://doi.org/10.1021/jf0206163
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Danielle Paula de Oliveira Mangarotti; Roberto Rezende; Reni Saath; Tiago Luan Hachmann; Paula Toshimi Matumoto-Pintro; Fernando Antônio Anjo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.