Treatment of leached from landfill applying Chlorella sp. immobilized in different polymeric matrices
DOI:
https://doi.org/10.33448/rsd-v9i12.10865Keywords:
Leachate; Phytoremediation; Immobilized microalgae; Ammoniacal nitrogen; Calcium alginate; Chitosan.Abstract
In this work, the capacity to remove ammonia nitrogen from landfill leachate previously diluted by Chlorella sp. immobilized in polymeric matrices of alginate/chitosan (AG/QT) and calcium alginate (AG). Two treatment systems were evaluated, one with tubular bioreactors fed with a substrate consisting of landfill leachate (LAS) in natura plus domestic sewage (ED) and another system consisting of conical bioreactors, having LAS substrate diluted in distilled water. The tests were carried out in batch mode at 27º C and luminance of 85 µE.s-1.m-2. The MEV and EDS analyzes of the surface of the spheres indicated that the support structure has porosity and retains the cells inside. Efficiencies of 40% ammoniacal nitrogen removal were observed after 4 hours of treatment of the LAS/ED substrate with microalgae immobilized in AG/QT. In the trials of Chlorella sp. immobilized in AG, removal efficiencies between 81 and 97% were recorded after 2 hours of treatment of the LAS substrate diluted in distilled water. In addition, Chlorella sp. presented efficiency of removal of N-ammonia from LAS diluted in distilled water in the range of 49 to 98% with increments of dissolved oxygen of up to 192% in 5 h of monitoring. These results indicate significant advantages of using immobilized microalgae for the treatment of wastewater, both in terms of resource recovery and recycling, and in relation to the potential phytoremediation of Chlorella sp. in the removal of ammoniacal nitrogen from landfill leachate.
References
American Public Health Association - APHA. (2012). Standard methods for the examination of water and wastewater. Washington, (22a ed.).
Bakraouy, H., Souabi, S., Digua, k. (2017). Optimization of the treatment of an anaerobic pretreated landfill leachate by coagulation–flocculation process using experimental design methodology. Process safety and environment protection, (109), 621–630.
Bischoff, H. W., Bold, H. C. (1963). Physiologic studies. IV. Some algae from enchanted rock and related algae species. University of Texas Publications,(6318),1-5.
Blank, C. E., Parks, R. W., Hinman, N. W. (2016) “Chitin: a potential new alternative nitrogen source for the tertiary, algal-based treatment of pulp and paper mill wastewater,” Journal of applied phycology, 28(5), 2753-2766.
Bligny, R., Gout, E., Kaiser, W., Heber, U., Walker, D., Douce, R. (1997). pH regulation in acid-stressed leaves of pea plants grown in the presences of nitrate of ammonium salts: studies involving p-NMR spectroscopy and clorophyll fluorescence. Biochim. Biophys. Acta. 1320(2), 145- 152.
Borowitzka, M. A. (1988). Microalgal Biotechnology Cambridge. University Press. Cambridge.
Britto, D. T., Kronzucker. H. J. (2006). Futile cycling at the plasma membrane a hallmark low-affinity nutrient transport. Trends plant sci. 11(11), 529-534.
Chen-Lin, S., Cheng-Ann, C., Othman, B., Yii-Siang, H. (2017). Feasibility of marine microalgae immobilization in alginate bead for marine water treatment: bead stability, cell growth, and ammonia removal. Hindawi international journal of polymer science. 7, 1-7. ID 6951212 https://doi.org/10.1155/2017/6951212.
Collos, Y., Harrison, P. J. (2014) Acclimation and Toxicity of high ammonium concentrations to unicellular algae. Elsevier. Marine Polluition Bulletin. 80(1-2), 8-23.
Covarrubias, S. A., De-Bashan, L. E., Moreno, M and Bashan, Y. (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae, Applied Microbiology and Biotechnology, 93(6), 2669-2680.
Cuellar-Bermudez. S. P., Aleman-Nava. G. S., Chandra. R., Garcia-Perez. J. S., Contreras-Angulo. J. R., Markou. G., Muylaert. K., Rittmann. B. E., Parra-Saldivar. R. (2017). Nutrients utilization and contaminants removal. a review of two approaches of algal and cyanobacteria in wastewater. Algal research. 24(12) 438-449.
Ehrig, H. J. (1983). Quality and quantity of sanitary landfill leachate. Waste management & research, (1), 53-68/ https://doi.org/10.1177/0734242X8400200116.
Fierro, S., Del Pilar Sánchez-Saavedra, M., Copalcúa, C. (2008). “Nitrate and phosphate removal by chitosan immobilized Scenedesmus,” Bioresource Technology, 99(5), 1274–1279.
Garcia, L. M., Gariépy.Y, Barnabe. S., Raghavan. V. (2020) .Biorefinery of microalgae biomass cultivated in wastewaters. Science Direct. (7), 149-180/ https://doi.org/10.1016/B978-0-12-818996-2.00007-7.
Giordano, M., Norici, A., Forssen, M., Eriksson, M., Raven, J. A. (2003). An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol.132 (4), 2126–2134.
Guerrero III, R. D., Villegas, C. T. (1982). Report of the training course on growing food organism for fish hatcheries. Philippines, South China Sea Fisheries Development/Coordinating Programam.
Heggers, G. R. V. N., YadavallI, R. (2014). Two Stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa. Journal of Environmental Health Science and Engineering. (11), 11-36. doi: 10.1186 / 2052-336X-11-36.
Jia, H., & Yuan, Q. (2016). Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environmental Science. 2(1). DOI: 10.1080/ 23311843.2016.1275089.
Kas, H. S. (1997). Chitosan: properties, preparation and application to microparticulate coupled with wastewater treatment for biofuel generation. Renewable and Sustainable. Journal Microencapsul. 14(6), 689-711.
Khanzada, Z. T., Övez, S. (2018). Growing Fresh Water microalgae in High Ammonium Landfill Leachate. American Journal of Mechanics and Applications. 6(2), 50-61.
Klochenko, P. D., Grubinko, V. V., Gumenyuk, G. B., Arsan, O. M. (2003). Peculiarites of ammonium nitrogen assimilation in green and blue-green algae. Hydrobiol. Journal. 39 (6), 102-108.
Koche, J. C., Fundamentos de Metodologia Científica- Teoria da ciência e iniciação à pesquisa. (2011) Editora Vozes. Petrópolis –RJ.
Leite, V. D., Oliveira, A. G., Campos, A. R. C., Sousa, J. T., Lopes, W. S., Oliveira, E. G. (2017). Tratamento conjugado de lixiviado de aterro sanitário e esgoto doméstico em lagoas de estabilização. Revista DAE. 77-93. DOI: 10.4322/dae.2016.036
Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrate municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138–5144.
Libânio, M. Fundamentos de Qualidade e Tratamento de Água. (2016). Campinas. SP: Editora Átomo, (4a ed.), 550.
Liu, X., Wang, Z. J., Wang, J., Wu, J., Peng, F. (2019). Ammonium removal potential and its conversion pathways by free and immobilized Scenedesmus obliquus from wastewater. Bioresource technology. 283,184-190. DOI: 10.1016 / j.biortech.2019.03.038.
Lu, Y., Xu, S., Jiang, Z., Yuan, W., Wang, T. (2005). Diffusion of Nicotinamide Adenine Dinuncleotide in Calcium Alginate Hydrogel Beads Doped with Carbon and Silica Nanotubes. Journal. Chem. Eng. Data. 50(4), 1319-1323.
Mojiri, A., Ziyang, L., Hui, W., Ahmad, Z., Tajuddin, R. M., Abu, S. S., Kindaichi, T., Aziz, H. A, Farraji, H. (2017). Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process, Process Saf. Environ. 111, 253–262. https://doi.org/10.1016/j.psep.2017.07.013
Monteiro, V. E. D. Análises física, químicas e biológicas no estudo do comportamento do Aterro da Muribeca. Veruschka Escarião Dessoles Monteiro- Recife- 2003. 232 fls. Tese (Doutorado em Engenharia Civil) – Universidade Federal de Pernambuco.
Mota, F. S. B., Von Sperling, M. (Org.). (2009). Nutrientes de Esgoto Sanitário: utilização e remoção. Rio de Janeiro: ABES, 428p.
Mustafa, E. M., Phang. S. M., Chu. W. L. (2012). Use of algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J. Appl. Phycol. 24(4), 953-963.
Peng, Y. (2013). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry. (79) DOI: 10.1016 / j.arabjc.2013.09.031.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da Pesquisa Científica (free ebook). Santa Maria. RS.
Pradella, J. G. C., Schmidell, W., Lima, U. A., Aquarone, E., Borzani, W. (2001). Reatores com células imobilizadas. In: Biotecnologia Industrial: Engenharia Bioquímica. São Paulo: Edgard Blücher. 2(16), 355-372.
Przytocka-Jusiak, M., Miynarczyk, A., Kulesza, M., & MycielskI. R. (1977). Properties of Chlorella vulgaris strain adapted to high concentration of ammonium nitrogen. Acta Microbiol. Pol., 26(2), 185-197.
Rendra, S., Warith, M. A., & Fernandes, L. (2007). Degradation of municipal solid waste in aerobic bioreactor landfills. Environmental Technology, v. 28, 609–620.
Ribeiro, A. J., Silva, C., Ferreira, D., Veiga, F. (2005). Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. European Journal of Pharmaceutical Science. 25(1), 31-40.
Salama, E. S., Hurade, M. B., Abou-Shanab, R. A.I., El-Dalatony, M. M., Yang, I. S., Min, B., Jeon, B. H. (2017). Recent progress in microalgae biomass production systems Energy Reviews, 79, 1189-1211.
Sian, R. (1984). Ammonia uptake by Chlorella vulgaris immobilized by calcium alginate beads for the application in the nutrient stripping of treated wastewater. Honours project. University of Liverpool.
Silva, M. C. C. P., Leite, V. D., Sousa, J. T., Pearson, H. W. (2017). Remoção de nutrientes de efluente secundário oriundo de filtro de areia usando a microalga Chlorella sp. imobilizada em matriz de alginato de cálcio. 9º Encontro Internacional das Águas, Universidade Católica de Pernambuco.
Souto, B. A. G. Lixiviados de Aterros Sanitários Brasileiros – Estudo de Remoção do Nitrogênio Amoniacal por Processo de Arraste com Ar (“stripping”). Gabriel D’arrigo de Brito Souto. São Carlos-2003. 371 fls. Tese de Doutorado (Programa de Pós-Graduação em Engenharia Hidráulica e Saneamento), Universidade de São Paulo.
Souto, G. D. B., Povinelli, J. (2007). Características do lixiviado de aterros sanitários no Brasil. In: Congresso Brasileiro de Engenharia Sanitária e Ambiental. Belo Horizonte. Anais. ABES, 1-7.
Takeda, H. (1988). Classification of Chlorella strains by cell wall sugar composition.
Phytochemistry. 27(12), 3823- 3826.
Tavares, L. H. S., Rocha. O. (2003). Produção de Plâncton (Fitoplâcton e Zooplâncton) para Alimentação de Organismos Aquáticos. São Carlos. Rima.105p.
Thanoo, B. C., Sunny, M. C., Jayakhrishnan, A. (1992). Cross-linked Chitosan microsferes: preparation and evaluation as a matrix for the controlled release of pharmaceuticals. Journal of Farmacy and Farmacology. London, 44(4), 283-286.
Valdez, C., Perenguez, Y., Matyas, B., Guevara, M, F. (2018). Analysis of removal of cadmium by action of immobilized Chlorella sp. microalgae in alginate beads. Research-Open for Science. 7(54). Doi: 10.12688 / f1000research.13527.1.
Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2005). Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnology Advances, 23(2), 115-129.
Whitton, R., Santinelli, M., Pidou, M., Ometto, F., Henderson, R., Roddick, F., Jarvis, P., Villa, R., Jefferson, B. (2018). Tertiary nutrient removal from wastewater nutrient characteristics and hydraulic retention time (TRH). IWA PUBLISHING, Open Journal, 1(1), 12-25.
Yazdani .M., Monavari, S. M., Omrani, G. A., Shariat, M., & Hosseini, S. M. (2015). Landfill sites suitability assessment by means of geographic information system analysis. Solid Earth, 6(3), 945–956.
Zhou, W., Chen, P., Min, M., Ma, X., Wang, J., & Griffith, R. (2014). Environment-enhancing algal biofuel production using wastewater. Renewable and Sustainable Energy Reviews, 36, 256–269. https://doi.org/10.1016/j.rser.2014.04.073.
Zhou, Z., Gui-Yin, L, I., Yuan-Jian., L, I. (2010). Immobilization of Saccharomyces cerevisiae alchol dehydrogenase on hybrid alginate-chitosan beads. International Journal of Biological Macromolecules. 47(1), 21-26.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Maria Célia Cavalcante de Paula e Silva; Valderi Duarte Leite; Maria Virgínia da Conceição Albuquerque; Amanda da Silva Barbosa Cartaxo; Railson de Oliveira Ramos; Wilton Silva Lopes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.