Tratamiento de fugas de relleno aplicando Chlorella sp. inmovilizados en diferentes matrices poliméricas

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i12.10865

Palabras clave:

Lixiviados; Fitorremediación; Microalgas inmovilizadas; Nitrógeno amoniacal; Alginato de calcio; Quitosano.

Resumen

En este trabajo, la capacidad de remover nitrógeno amoniacal del lixiviado de relleno sanitario previamente diluido por Chlorella sp. Inmovilizado en matrices poliméricas de alginato / quitosano (AG / QT) y alginato de calcio (AG). Se evaluaron dos sistemas de tratamiento, uno con biorreactores tubulares alimentados con un sustrato compuesto por lixiviados de vertedero (LAS) in natura más alcantarillado doméstico (ED) y otro sistema compuesto por biorreactores cónicos, con sustrato LAS diluido en agua destilada. Las pruebas se realizaron en modo discontinuo a 27ºC y luminancia de 85 µE.s-1.m-2. Los análisis SEM y EDS de la superficie de las esferas indicaron que la estructura de soporte tiene porosidad y retiene las células en su interior. Se observaron eficiencias de eliminación de nitrógeno amoniacal al 40% después de 4 horas de tratamiento del sustrato LAS/ED con microalgas inmovilizadas en AG/QT. En los ensayos de Chlorella sp. Inmovilizados en AG, se registraron eficiencias de eliminación entre 81 y 97% después de 2 horas de tratamiento del sustrato LAS diluido en agua destilada. Además, Chlorella sp. presentaron eficiencia de remoción de N-amoníaco de LAS diluidas en agua destilada en el rango de 49 a 98% con incrementos de oxígeno disuelto de hasta 192% en 5 h de monitoreo. Estos resultados indican ventajas significativas del uso de microalgas inmovilizadas para el tratamiento de aguas residuales, tanto en términos de recuperación y reciclaje de recursos, como en relación con la potencial fitorremediación de Chlorella sp. en la remoción de nitrógeno amoniacal del lixiviado de vertederos.

Citas

American Public Health Association - APHA. (2012). Standard methods for the examination of water and wastewater. Washington, (22a ed.).

Bakraouy, H., Souabi, S., Digua, k. (2017). Optimization of the treatment of an anaerobic pretreated landfill leachate by coagulation–flocculation process using experimental design methodology. Process safety and environment protection, (109), 621–630.

Bischoff, H. W., Bold, H. C. (1963). Physiologic studies. IV. Some algae from enchanted rock and related algae species. University of Texas Publications,(6318),1-5.

Blank, C. E., Parks, R. W., Hinman, N. W. (2016) “Chitin: a potential new alternative nitrogen source for the tertiary, algal-based treatment of pulp and paper mill wastewater,” Journal of applied phycology, 28(5), 2753-2766.

Bligny, R., Gout, E., Kaiser, W., Heber, U., Walker, D., Douce, R. (1997). pH regulation in acid-stressed leaves of pea plants grown in the presences of nitrate of ammonium salts: studies involving p-NMR spectroscopy and clorophyll fluorescence. Biochim. Biophys. Acta. 1320(2), 145- 152.

Borowitzka, M. A. (1988). Microalgal Biotechnology Cambridge. University Press. Cambridge.

Britto, D. T., Kronzucker. H. J. (2006). Futile cycling at the plasma membrane a hallmark low-affinity nutrient transport. Trends plant sci. 11(11), 529-534.

Chen-Lin, S., Cheng-Ann, C., Othman, B., Yii-Siang, H. (2017). Feasibility of marine microalgae immobilization in alginate bead for marine water treatment: bead stability, cell growth, and ammonia removal. Hindawi international journal of polymer science. 7, 1-7. ID 6951212 https://doi.org/10.1155/2017/6951212.

Collos, Y., Harrison, P. J. (2014) Acclimation and Toxicity of high ammonium concentrations to unicellular algae. Elsevier. Marine Polluition Bulletin. 80(1-2), 8-23.

Covarrubias, S. A., De-Bashan, L. E., Moreno, M and Bashan, Y. (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae, Applied Microbiology and Biotechnology, 93(6), 2669-2680.

Cuellar-Bermudez. S. P., Aleman-Nava. G. S., Chandra. R., Garcia-Perez. J. S., Contreras-Angulo. J. R., Markou. G., Muylaert. K., Rittmann. B. E., Parra-Saldivar. R. (2017). Nutrients utilization and contaminants removal. a review of two approaches of algal and cyanobacteria in wastewater. Algal research. 24(12) 438-449.

Ehrig, H. J. (1983). Quality and quantity of sanitary landfill leachate. Waste management & research, (1), 53-68/ https://doi.org/10.1177/0734242X8400200116.

Fierro, S., Del Pilar Sánchez-Saavedra, M., Copalcúa, C. (2008). “Nitrate and phosphate removal by chitosan immobilized Scenedesmus,” Bioresource Technology, 99(5), 1274–1279.

Garcia, L. M., Gariépy.Y, Barnabe. S., Raghavan. V. (2020) .Biorefinery of microalgae biomass cultivated in wastewaters. Science Direct. (7), 149-180/ https://doi.org/10.1016/B978-0-12-818996-2.00007-7.

Giordano, M., Norici, A., Forssen, M., Eriksson, M., Raven, J. A. (2003). An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol.132 (4), 2126–2134.

Guerrero III, R. D., Villegas, C. T. (1982). Report of the training course on growing food organism for fish hatcheries. Philippines, South China Sea Fisheries Development/Coordinating Programam.

Heggers, G. R. V. N., YadavallI, R. (2014). Two Stage treatment of dairy effluent using immobilized Chlorella pyrenoidosa. Journal of Environmental Health Science and Engineering. (11), 11-36. doi: 10.1186 / 2052-336X-11-36.

Jia, H., & Yuan, Q. (2016). Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environmental Science. 2(1). DOI: 10.1080/ 23311843.2016.1275089.

Kas, H. S. (1997). Chitosan: properties, preparation and application to microparticulate coupled with wastewater treatment for biofuel generation. Renewable and Sustainable. Journal Microencapsul. 14(6), 689-711.

Khanzada, Z. T., Övez, S. (2018). Growing Fresh Water microalgae in High Ammonium Landfill Leachate. American Journal of Mechanics and Applications. 6(2), 50-61.

Klochenko, P. D., Grubinko, V. V., Gumenyuk, G. B., Arsan, O. M. (2003). Peculiarites of ammonium nitrogen assimilation in green and blue-green algae. Hydrobiol. Journal. 39 (6), 102-108.

Koche, J. C., Fundamentos de Metodologia Científica- Teoria da ciência e iniciação à pesquisa. (2011) Editora Vozes. Petrópolis –RJ.

Leite, V. D., Oliveira, A. G., Campos, A. R. C., Sousa, J. T., Lopes, W. S., Oliveira, E. G. (2017). Tratamento conjugado de lixiviado de aterro sanitário e esgoto doméstico em lagoas de estabilização. Revista DAE. 77-93. DOI: 10.4322/dae.2016.036

Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrate municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138–5144.

Libânio, M. Fundamentos de Qualidade e Tratamento de Água. (2016). Campinas. SP: Editora Átomo, (4a ed.), 550.

Liu, X., Wang, Z. J., Wang, J., Wu, J., Peng, F. (2019). Ammonium removal potential and its conversion pathways by free and immobilized Scenedesmus obliquus from wastewater. Bioresource technology. 283,184-190. DOI: 10.1016 / j.biortech.2019.03.038.

Lu, Y., Xu, S., Jiang, Z., Yuan, W., Wang, T. (2005). Diffusion of Nicotinamide Adenine Dinuncleotide in Calcium Alginate Hydrogel Beads Doped with Carbon and Silica Nanotubes. Journal. Chem. Eng. Data. 50(4), 1319-1323.

Mojiri, A., Ziyang, L., Hui, W., Ahmad, Z., Tajuddin, R. M., Abu, S. S., Kindaichi, T., Aziz, H. A, Farraji, H. (2017). Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process, Process Saf. Environ. 111, 253–262. https://doi.org/10.1016/j.psep.2017.07.013

Monteiro, V. E. D. Análises física, químicas e biológicas no estudo do comportamento do Aterro da Muribeca. Veruschka Escarião Dessoles Monteiro- Recife- 2003. 232 fls. Tese (Doutorado em Engenharia Civil) – Universidade Federal de Pernambuco.

Mota, F. S. B., Von Sperling, M. (Org.). (2009). Nutrientes de Esgoto Sanitário: utilização e remoção. Rio de Janeiro: ABES, 428p.

Mustafa, E. M., Phang. S. M., Chu. W. L. (2012). Use of algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J. Appl. Phycol. 24(4), 953-963.

Peng, Y. (2013). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry. (79) DOI: 10.1016 / j.arabjc.2013.09.031.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da Pesquisa Científica (free ebook). Santa Maria. RS.

Pradella, J. G. C., Schmidell, W., Lima, U. A., Aquarone, E., Borzani, W. (2001). Reatores com células imobilizadas. In: Biotecnologia Industrial: Engenharia Bioquímica. São Paulo: Edgard Blücher. 2(16), 355-372.

Przytocka-Jusiak, M., Miynarczyk, A., Kulesza, M., & MycielskI. R. (1977). Properties of Chlorella vulgaris strain adapted to high concentration of ammonium nitrogen. Acta Microbiol. Pol., 26(2), 185-197.

Rendra, S., Warith, M. A., & Fernandes, L. (2007). Degradation of municipal solid waste in aerobic bioreactor landfills. Environmental Technology, v. 28, 609–620.

Ribeiro, A. J., Silva, C., Ferreira, D., Veiga, F. (2005). Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. European Journal of Pharmaceutical Science. 25(1), 31-40.

Salama, E. S., Hurade, M. B., Abou-Shanab, R. A.I., El-Dalatony, M. M., Yang, I. S., Min, B., Jeon, B. H. (2017). Recent progress in microalgae biomass production systems Energy Reviews, 79, 1189-1211.

Sian, R. (1984). Ammonia uptake by Chlorella vulgaris immobilized by calcium alginate beads for the application in the nutrient stripping of treated wastewater. Honours project. University of Liverpool.

Silva, M. C. C. P., Leite, V. D., Sousa, J. T., Pearson, H. W. (2017). Remoção de nutrientes de efluente secundário oriundo de filtro de areia usando a microalga Chlorella sp. imobilizada em matriz de alginato de cálcio. 9º Encontro Internacional das Águas, Universidade Católica de Pernambuco.

Souto, B. A. G. Lixiviados de Aterros Sanitários Brasileiros – Estudo de Remoção do Nitrogênio Amoniacal por Processo de Arraste com Ar (“stripping”). Gabriel D’arrigo de Brito Souto. São Carlos-2003. 371 fls. Tese de Doutorado (Programa de Pós-Graduação em Engenharia Hidráulica e Saneamento), Universidade de São Paulo.

Souto, G. D. B., Povinelli, J. (2007). Características do lixiviado de aterros sanitários no Brasil. In: Congresso Brasileiro de Engenharia Sanitária e Ambiental. Belo Horizonte. Anais. ABES, 1-7.

Takeda, H. (1988). Classification of Chlorella strains by cell wall sugar composition.

Phytochemistry. 27(12), 3823- 3826.

Tavares, L. H. S., Rocha. O. (2003). Produção de Plâncton (Fitoplâcton e Zooplâncton) para Alimentação de Organismos Aquáticos. São Carlos. Rima.105p.

Thanoo, B. C., Sunny, M. C., Jayakhrishnan, A. (1992). Cross-linked Chitosan microsferes: preparation and evaluation as a matrix for the controlled release of pharmaceuticals. Journal of Farmacy and Farmacology. London, 44(4), 283-286.

Valdez, C., Perenguez, Y., Matyas, B., Guevara, M, F. (2018). Analysis of removal of cadmium by action of immobilized Chlorella sp. microalgae in alginate beads. Research-Open for Science. 7(54). Doi: 10.12688 / f1000research.13527.1.

Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2005). Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnology Advances, 23(2), 115-129.

Whitton, R., Santinelli, M., Pidou, M., Ometto, F., Henderson, R., Roddick, F., Jarvis, P., Villa, R., Jefferson, B. (2018). Tertiary nutrient removal from wastewater nutrient characteristics and hydraulic retention time (TRH). IWA PUBLISHING, Open Journal, 1(1), 12-25.

Yazdani .M., Monavari, S. M., Omrani, G. A., Shariat, M., & Hosseini, S. M. (2015). Landfill sites suitability assessment by means of geographic information system analysis. Solid Earth, 6(3), 945–956.

Zhou, W., Chen, P., Min, M., Ma, X., Wang, J., & Griffith, R. (2014). Environment-enhancing algal biofuel production using wastewater. Renewable and Sustainable Energy Reviews, 36, 256–269. https://doi.org/10.1016/j.rser.2014.04.073.

Zhou, Z., Gui-Yin, L, I., Yuan-Jian., L, I. (2010). Immobilization of Saccharomyces cerevisiae alchol dehydrogenase on hybrid alginate-chitosan beads. International Journal of Biological Macromolecules. 47(1), 21-26.

Publicado

13/12/2020

Cómo citar

SILVA, M. C. C. de P. e .; LEITE, V. D. .; ALBUQUERQUE, M. V. da C. .; CARTAXO, A. da S. B. .; RAMOS, R. de O. .; LOPES, W. S. . Tratamiento de fugas de relleno aplicando Chlorella sp. inmovilizados en diferentes matrices poliméricas. Research, Society and Development, [S. l.], v. 9, n. 12, p. e7691210865, 2020. DOI: 10.33448/rsd-v9i12.10865. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10865. Acesso em: 8 ene. 2025.

Número

Sección

Ingenierías