Use of in natura and ozonated essential oils in the in vitro control of Trichophyton mentagrophytes

Authors

DOI:

https://doi.org/10.33448/rsd-v10i1.11233

Keywords:

Dermatophyte; Ozone; Medicinal plants; Natural antifungal.

Abstract

Some species of fungi are capable of causing mycotic infections. One of these infections is dermatophytosis, caused by a group of fungi, called dermatophytes, which comprises the genera Trichophyton, Microsporum and Epidermophyton. The treatment of the disease is carried out using conventional antifungals. The emergence of resistant strains has stimulated the development of natural medicines and the use of ozone gas. The objective of this research was to evaluate the antifungal activity of essential oils in natura and ozonized against the Trichophyton mentagrophytes ATTC 9533. Essential oils in natura and ozonated from Cinnamomum cassia, (L.) Presl), Eugenia caryphollata L. Merr. & L. M. Perry, Cymbopogon winterianus Jowitt, Eucalyptus globulus Labill, Eucalyptus staigeriana F. Muell. ex F. M. Bailey e Mentha piperita L. evaluated for antifungal activity. The oils were ozonized in corona equipment. The microdilution technique was used to assess the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC). The fungicidal kinetics of essential oils were determined. C. winterianus C. cassia and E. caryphollata ozonated oils proved to be able to cancel Trichophyton mentagrophytes with exposure for 5-10 minutes, proving to be more efficient than those of eucalyptus and mint. In general, the results showed the antifungal activity of essential oils, pointing to the possibility of use in antifungal therapy against the dermatophyte evaluated. However, there is a need for studies on the safety in use and the effectiveness of essential oils.

Author Biographies

Joelma Evelin Pereira Kume, Universidade Brasil

Mestre em Ciências Ambientais

Universidade Brasil (UB)

Roberto Andreani Junior, Universidade Brasil

Professor Titular do Mestrado em Ciências Ambientais

Universidade Brasil

Marilisa Flavia Pereira Di-Tanno, Estadual de Educação Tecnológica Paula Souza

Doutora em Engenharia Biomédica

Professora do Centro Estadual de Educação Tecnológica Paula Souza 

References

Aiemsaard, J., & Punareewattana, K. (2017). Antifungal activities of essential oils of Syzygium aromaticum, Piper betle, and Ocimum sanctum against clinical isolates of canine Dermatophytes. Science Asia, 43(5), 223-228. 10.2306/scienceasia1513-1874.2017.43.223

Allahghadri, T., et al. (2010). Antimicrobial property, antioxidant capacity and cytotoxicity of essential oil from cumi.; produced in Iran. Journal of Food Science, 75(2), H54-H61, 2010.

Anzolin, A. P., et al. (2020). Ozonated oil in wound healing: what has already been proven? Medical Gas Research, 10(1), 54-59. 10.4103/2045-9912.279985

Batiha, G. E. S., et al. (2020). Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules, 10(202), 1-16. 10.3390/biom10020202

Bocci, V. A. (2006). Scientific and medical aspects of ozone therapy. State of the art. Archives of Medical Research, 37(4,), 425-435.

Bocci, V., et al. (2009). The ozone paradox: ozone is a strong oxidant as well as a medical drug. Medicinal Research Reviews, 29(4), 646-682. 10.1002/med.20150

Carvalho, M. M. L., et al. (2020). Comparative analysis of in vitro antibacte.rial effectiveness of ozonized and non-ozonized vegetable oils on Neisseria gonorrhoeae. Journal of Modern Medicinal Chemistry, 8, 41-48. 10.12970/2308-8044.2020.08.05

Clinical and Laboratory Standards Institute. (2008). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard CLSI Document M38-A2; CLSI: Wayne, PA, USA.

Clinical and Laboratory Standards Institute. (2012). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Fourth Informational Supplement; Document M27-S4; CLSI: Wayne, P. A., USA.

Cortez, L. E. R, et al. (2015). Avaliação da atividade antifúngica dos óleos essencias de Lippia alba (Mill.) NE Brown (Verbenaceae) e Cymbopogon citratus (DC) Stapf (Poaceae). Mundo saúde. 39(4), 433-440.

De Almeida, N. R., et al. (2012). Ozonized vegetable oils and therapeutic properties: A review. Orbital: The Electronic Journal of Chemistry, 4(4), 313-326. 10.17807/orbital.v4i4.467

Guimarães, L. G. D. L., et al. (2011). Atividades antioxidante e fungitóxica do óleo essencial de capim-limão e do citral. Revista Ciência Agronômica, 42(2), 464-472. 10.1590/S0100-29452014000500031

Hadacek, F., & Greger, H. (2000) Testing of antifungal natural products: methodologies, comparability of results and assay choise. Phytochemical Analysis, 11(3), 137-147.

Havlickova, B., et al. (2008). Epidemiological trends in skin mycoses worldwide. Mycoses, 51(4), 2‑15.

Ibrahim, S. Y., & El-Salam, M. M. A. (2015). Anti-dermatophyte efficacy and environmental safety of some essential oils commercial and in vitro extracted pure and combined against four keratinophilic pathogenic fungi. Environmental Health and Preventive Medicine, 20, 279–286. 10.1007/s12199-015-0462-6

Kaur, K., & Kaushal, S. (2019). Phytochemistry and pharmacological aspects of Syzygium aromaticum: A review. Journal of Pharmacognosy and Phytochemistry, 8(1), 398-406, www.phytojournal.com.

Khan, M. S. A, et al. (2013). Phenyl aldehyde and propano ids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. AMB Express, 3(1), 54-61. 10.1186/2191-0855-3-54

Kozusny-Andreani, D. I., et al. (2018). In vitro,inactivation of pathogenic bacteria by the use of ozone in different exposure times. Revista Cubana de Medicina Tropical. 70, 34-44.

Kumar, V., et al. (2014). In vitro inhibition activity of essential oils from some Lamiaceae species against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 114, 67-71. 10.1016/j.pestbp.2014.07.001.

Madhavi, S., et al. (2011). Mycological study of dermatophytoses in rural population. Annals of Biological Research, 2, 88-93.

Medice, R., et al. (2007). Óleos essenciais no controle da ferrugem asiática da soja Phakopsora pachyrhizi syd. & p. Syd. Ciência e Agrotecnologia, 31(1), 83-90. 10.1590/S1413-70542007000100013.

Menezes e Silva, C. H. P., et al. (2006). Bacteriologia e Micologia para o Laboratório Clinico. Livraria e Editora Revinter Ltda.: Rio de Janeiro.

Moureu, S., et al. (2016). Influence of storage temperature on the composition and the antibacterial activity of ozonized sunflower oil. Ozone: Science & Engineering, 38(2), 143-149. doi: 10.1080/01919512.2015.1128319.

Ouf, S. A., et al. (2016). Anti-fungal potential of ozone against some dermatophytes. Brazilian Journal of Microbiology, 47(3), 697-702. 10.1016/j.bjm.2016.04.014 .

Park, M. J., et al. 2007). Antifungal activities of the essential oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their constituents against various dermatophytes. Journal of Microbiology, 45(5), 460-465.

Pereira, M. C., et al. (2006). Inibição do desenvolvimento fúngico através da utilização de óleos essenciais de condimentos. Ciência e Agrotecnologia, 30(4), 731-738. 10.1590/S1413-70542006000400020.

Rozwalka, L. C., et al. (2008). Extratos, decoctos e óleos essenciais de plantas medicinais e aromáticas na inibição de Glomerella cingulata e Colletotrichum gloeosporioides de frutos de goiaba. Ciência Rural, 38(2), 301-307..org/10.1590/S0103-84782008000200001

Sabo, V. A., & Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial Crops and Products, 132, 413-429. 10.1016/j.indcrop.2019.02.051.

Siddiqui, S. A., et al. (2017). Chemical composition and antifungal properties of the essential oil and various extracts of Mikania scandens (L.) Willd. Arabian Journal Chemistry, 10(2), S2170–S2174. 10.1016/j.arabjc.2013.07.050.

Siham, Y., et al. (2020). Determination of chemical composition and evaluation of antioxidant, and antimicrobial activities of Clove oil obtained from Syzygium aromaticum Moroccan species. International Journal of Pharmaceutical Sciences and Research, 11(2), 2568-2574. 10.26452/ijrps.v11i2.2261.

Skalska, K., et al. (2009). Germicidal properties of ozonated sunflower oil. Ozone: Science & Engineering, 31(3), 232-237. doi: 10.1080/01919510902838669.

Sylvester, P.W. (2011). Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods in Molecular Biology. 716, 157-168. 10.1007/978-1-61779-012-6_9.

Tortora, G. J., Funke, B. R., & Case, C. L. (2017). Microbiologia. (12a ed) Artmed, 939.

Tullio, V., et al. (2019). Evaluation of the Antifungal Activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) Essential Oil and Its Synergistic Interaction with Azoles. Molecules. 24, 3148. 10.3390/molecules24173148.

Ugazio, E., et al. (2020). Ozonated oils as antimicrobial systems in topical applications. their characterization, current applications, and advances in improved delivery techniques. Molecules. 25, 334. 10.3390/molecules25020334.

Youmsi Fokouo, R. D., et al. (2020). Antidermatophyte activity of Syzygium aromaticum, Petroselinum crispum, and Tetrapleura tetraptera. Biomedical and Biotechnology Research Journal. 4, 55-60. http://www.bmbtrj.org.

Yousef, S. A. A. (2013). Antifungal Activity of Volatiles from Lemongrass (Cymbopogon citratus) and Peppermint (Mentha piperita) Oils Against Some Respiratory Pathogenic Species of Aspergillus. International Journal of Current Microbiology and Applied Sciences, 2(6), 261-272. http://www.ijcmas.com.

Zanardi, I., et al. (2008). Physico-chemical characterization of sesame oil derivatives. Lipids, 43, 877-886. doi:10.1007/s11745-008-3218-x.

Zanardi, I., et al. (2016). Ozone: a multifaceted molecule with unexpected therapeutic activity. Current Medicinal Chemistry 23(4), 304–314 10.2174/0929867323666151221150420.

Published

03/01/2021

How to Cite

KUME, J. E. P.; ANDREANI JUNIOR, R. .; DI-TANNO, M. F. P. .; KOZUSNY-ANDREANI, D. I. Use of in natura and ozonated essential oils in the in vitro control of Trichophyton mentagrophytes. Research, Society and Development, [S. l.], v. 10, n. 1, p. e4710111233, 2021. DOI: 10.33448/rsd-v10i1.11233. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11233. Acesso em: 8 mar. 2021.

Issue

Section

Health Sciences