Evaluation of Biological Toxicity of CdTe Quantum Dots in Trypanosoma cruzi
DOI:
https://doi.org/10.33448/rsd-v9i12.11274Keywords:
Protozoan parasites; Fluorescence nanoparticles; Bioimaging; Nanotoxicity.Abstract
Luminescent semiconductor nanocrystals or quantum dots (QDs) emerge as important fluorescent probes for in vitro and in vivo Trypanosoma cruzi cells studies. However, to ensure applicability to living organisms, several tests still need to be done. Since several toxic events are caused by QDs, such as loss of mitochondrial membrane potential, ROS generation, DNA damage and cell death by autophagy. We performed a review of the literature on mechanisms of cellular uptake, internalization and citotoxicity of nanoparticles including our results about the evaluation of biological toxicity in T. cruzi. We evaluated the possible effects on parasite growth curves in a time - scale of control and incubated cells with different concentrations of CdTe – QDs (0.2; 2.0; 20 and 200µM) to determine the development cells changes. In addition, intracellular ROS were measured by Electron Paramagnetic Resonance Spectroscopy (EPR) technique. According our results, we can infer that the toxic effects of QDs in T. cruzi are dose-dependent and that high levels of ROS are involved in cellular toxicity promoted by higher concentrations of QDs. In summary, parasites labeled with low concentrations of nanoparticles are suitable and can be used as bioimaging tools for living parasites. However, more studies on QDs cytotoxicity need to be carried out.
References
Abbasi, E., Kafshdooz, T., Bakhtiary, M., Nikzmir. N., Nikzamir, N. A., Nikzamir, M., Mohammadian, M. & Akbarzadeh, A. (2016). Biomedical and biological applications of quantum dots. Artificial Cells Nanomedicine Biotechnology, 44(3): 885-91.
Banerjee, A., Pons, T., Lequeux, N. & Dubertret, B. (2016). Quantum dots-DNA bioconjugates: synthesis to applications. Interface Focus, 6(6): 20160064.
Beddoes C. M., Case C. P., Briscoe W. H. Understanding nanoparticle cellular entry: A physicochemical perspective. Advances Colloid Interface Science, 218:48‐68.
Brkić S. (2015) Applicability of Quantum Dots in Biomedical Science. In: Djezzar B. org. Ionizing Radiation Effects and Applications. Intech Open, p.1-21.
Buchman, J. T., Hudson-Smith, N. V., Landy K. M., Haynes C.L. (2019) Understanding Nanoparticle Toxicity Mechanisms to Inform Redesign Strategies to Reduce Environmental Impact. Accounts of Chemical Research, 52(6): 1631-1642.
Caballero- Diaz, E. & Cases, M. V. (2016). Analytical methodologies for nanotoxicity assessment. Trends in Analytical Chemistry, 84,160-171.
Cannino, G., Ferruggia, E., Luparello, C. & Rinaldi, A. M. (2009). Cadmium and mitochondria. Mitochondrion, 9(6): 377-84.
Canton, I. & Battaglia, G. (2012). Endocytosis at the nanoscale. Chemical Society Reviews, 41(7): 2718-39.
Cavalier-Smith, T. (2010). Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biology Letters, 23, 6(3): 342-5.
Chandrasekaran, B., Dahiya N. R., Tyagi, A., Kolluru, V., Saran, U., Baby B.V., States, J. C., Haddad, A. Q., Ankem M. K., Damodaran, C. (2020). Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis, 9 (2): 23.
Chaves, C. R., Fontes, A., Farias, P. M. A., Santos, B. S., Menezes, F. D., Ferreira, C., Cesar, C. L., Galembeck, A., Figueiredo, R. C. B. Q. ( 2008). Application of core-shell pegylated CdS/Cd (OH) 2 quantum dots as biolabels of Trypanosoma cruzi parasites. Applied Surface Science, 255(3): 728-30.
Chen G., Zhang Y., Peng Z., Huang D., Li C., Wang, Q. (2019). Glutathione-capped quantum dots for plasma membrane labeling and membrane potential imaging. Nano Research, 12: 1321–1326.
Cunha-e-Silva, N., Sant'Anna, C., Pereira, M. G., Porto-Carreiro, I., Jeovanio, A. L., de Souza, (2006). Reservosomes: multipurpose organelles? Parasitology Research, 99(4): 325-7.
De Souza W. (2002) Cell Biology of Trypanosoma cruzi. Current Pharmaceutical Desgni, 8: 269:85.
De Souza (2009). Structural organization of Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz, 104 Suppl1:89-100.
Dias, J. C. P. & Amato Neto, V. (2011). Prevention concerning the different alternative routes for transmission of Trypanosoma cruzi in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 44(2): 68-72.
Di Meo, S., Reed, T. T., Venditti, P., Victor V. M. (2016). Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Medicine and Cellular Longevity, 1245049.
Feder, D., Gomes, S. A. O., Thomaz, A. A., Almeida, D. B., Faustino W. M., Fontes, A., Stahl, C. V., Santos-Mallet, J. R. & Cesar, C. L. (2009). In vitro and in vivo documentation of quantum dots labeled Trypanosoma cruzi –Rhodnius prolixus interaction using confocal microscopy. Parasitology Research, 106(1): 85-9.
Ferreira, L. A. B., Radaic, A., Pugliese, G. O., Valentini, M. B., Oliveira, M. R., de Jesus, M. B. (2014). Endocytosis and intracellular trafficking of nanomaterials. Acta Farmacêutica Portuguesa, 3 (2): 143-54.
Field, L. D., Chen, Y. C., Delehanty, J. B. (2020). Semiconductor quantum dots for visualization and sensing in neuronal cell systems. In: Basic Neurobiology Techniques, 152: 1–18.
Field, M. C., Carrington, M. (2009). The trypanosome flagellar pocket. Nature Reviews Microbiology, 7(11): 775-86.
Fontes, A., Beate, S., Chaves, C. R. & Figueiredo, R. C. B. (2012). Q. II-VI Quantum Dots as Fluorescent Probes for Studying Trypanosomatides, In: Ameenah Al-Ahmadi. (Org.). Quantum Dots - A Variety of New Applications, 1ed. Rijeka: InTech Open, v. 1, p. 241-260.
Geske – Moritz M, Moritz, M. (2013). Quantum dots as versatile probes in medical sciences: Synthesis, modification and properties. Materials Science & Engineering. C, 33(3):1008-1021.
Gomes, S. A. O., Vieira, C. S., Almeida, D. B., Santos-Mallet, J., Menna-Barreto, R. F. S., CESAR, C. L. & Feder, D. (2011). CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms. Sensors, 11: 11664-11678, doi:10.3390/s111211664.
He, T., Shen, H., Zhu, J., Zhu, Y., He, Y., Li, Z., Lu, H. (2019). Geniposide attenuates cadmium‑induced oxidative stress injury via Nrf2 signaling in osteoblasts. Molecular Medicine Report, 20 (2): 1499-1508.
He, W., Liu, Y., Wamer, W. G., Yin, J. J. (2014). Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1):49‐63.
He, S. J., Cao, J., Li, Y. S., Yang, J. C., Zhou, M., Qu, C. Y., Zhang, Y., Shen, F., Chen, Y., Li, M. M., Xu, L. M. (2016). CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells. World Journal of Gastroenterology, 22(21): 5012–5022.
Hu, L., Zeng, G., Chen, G., Huang, Z., Wan, J., Chen, A., Yu, Z., Yang, J., He, K., Qin, L. (2017). Bioaccumulation and toxicity of CdSe/ZnS quantum dots in Phanerochaete chrysosporium. Colloids and Surfaces B: Biointerfaces, 159: 303–311.
Hu, L., Zhong, H., He, Z. (2019). The cytotoxicities in prokaryote and eukaryote varied for CdSe and CdSe/ZnS quantum dots and differed from cadmium ions. Ecotoxicology and Environmental Safety, 181: 336-344.
Joardar, S., Dewanjee, S., Bhowmick, S., Dua T. K., Das S., Saha A. and De Feo V. (2019). Rosmarinic Acid Attenuates Cadmium-Induced Nephrotoxicity via Inhibition of Oxidative Stress, Apoptosis, Inflammation and Fibrosis. International Journal of Molecular Sciences, 20(8): 2027.
Khalili Fard, J., Jafari, S. & Eghbal, M. A. (2015). A Review of Molecular Mechanisms Involved in Toxicity of Nanoparticles. Advanced Pharmaceutical Bulletin, 5(4): 447-54.
Koren, A., Lunder, M., Molek, P., Kopac, P., Zahirovic, A., Gattinger, P., Korosec, P. (2020). Fluorescent labeling of major honeybee allergens Api m 1 and Api m 2 with Quantum dots and the development of a multiplex basophil activation test. Allergy, 00: 1–4.
Lai, L., Li, Y. P., Mei, P., Chen, W., Jiang, F. L., Liu, Y. (2016). Size Effects on the Interaction of QDs with the Mitochondrial Membrane In Vitro. The Journal of Membrane Biology, 249(6): 757–767.
Li, Y., Liz, Z., Wang, X., Liu, F., Cheng, Y., Zhang, B. & Shi, D. (2012). In vivo cancer targeting and imaging-guided surgery with near infrared-emitting quantum dot bioconjugates. Theranostics, 2(8): 769-76.
Li, L., Tian, J., Wang, X., Xu, G., Jiang, W., Yang, Z., Liu, D., Lin, G. (2019). Cardiotoxicity of Intravenously Administered CdSe/ZnS Quantum Dots in BALB/c Mice. Frontiers in Pharmacology, 10: 1179.
Lin, F., Peng, Y-H., Yang, Q-H., Mi, X-J. (2015). Resveratrol inhibits cadmium induced neuronal apoptosis by modulating calcium signalling pathway via regulation of MAPK/ mTOR network. Bangladesh Journal of Pharmacology, 10: 366-276.
Liu, C., Zhu, Y., Lu, Z., Guo, W., Tumen, B., He, Y., Chen, C., Hu, S., Xu, K., Wang, Y., Li, L., Li, S., Liu, C., Zhu, Y., Lu, Z., Guo, W., Tumen, B., He, Y., Chen, C., Hu, S., Xu, K., Wang, Y., Li, L., Li, S. (2019). Cadmium Induces Acute Liver Injury by Inhibiting Nrf2 and the Role of NF-κB, NLRP3, and MAPKs Signaling Pathway. International Journal of Environmental Research and Public Health, 17(1): 138.
Lyublinskaya, O. G., Borisov, Y. G., Pugovkina, N. A., Smirnova, I. S., Obidina, J. V., Ivanova, J. S., Zenin, V. V., Shatrova, A. N., Borodkina, A. V., Aksenov, N. D., Zemelko, V. I., Burova, E. B., Puzanov, M. V., Nikolsky, N. N. (2015). Reactive Oxygen Species Are Required for Human Mesenchymal Stem Cells to Initiate Proliferation after the Quiescence Exit. Oxidative Medicine and Cellular Longevity, 502105.
Manshian, B. B., Soenen, S. J., Al-Ali, A., Brown, A., Hondow, N., Wills, J., Jenkins, G. J., Doak, S. H. (2015). Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints. Toxicological Sciences, 144(2): 246–258.
Marques, W. A., Gomes, S. A. O., Almeida, D. B., Menna-Barreto, R. F. S., Santos-Mallet, J. R., Cesar, C. L., Feder, D. (2014). Evidence of autophagy in Trypanosoma cruzi cells by Quantum dots. Acta Microscoscopica, 23(1): 1-10.
Mattea, C. T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C. & Mocan, L. (2017). Quantum dots in imaging, drug delivery and sensor applications. International Journal of Nanomedicine, 12: 5421-5431.
Meng, J., Wang, W., Li, L., Yin, Q., Zhang, G. (2017). Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Scientific Reports – Nature, 7(1): 11716.
Miller, I. P., Pavlović, I., Poljšak, B., Šuput, D., Milisav, I. (2019). Beneficial Role of ROS in Cell Survival: Moderate Increases in H2O2 Production Induced by Hepatocyte Isolation Mediate Stress Adaptation and Enhanced Survival. Antioxidants (Basel, Switzerland), 8(10): 434.
Montón, H., Roldán, M., Merkoci, A., Rossinyol, E., Castell, O. & Nogués, C. (2012). The use of Quantum Dots for Immunochemistry Application. Methods in Molecular Biology, 906: 185-92.
Neminche, S., Guiraud, P. (2016). Cadmium- induced oxidative stress damages in the human BJAB cell correlate with changes in intracellular trace elements levels and zinc transporters. Toxicology in Vitro, 37: 169-177.
Nanda, S. S., Kim, M. J., Kim, K., Papaefthymiou, G. C., Selvan, S. T., Yi, D. K. (2017). Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications. Colloids and Surfaces B: Biointerfaces, 159: 644–654.
Oh, N., Park, J. H. (2014). Endocytosis and exocytosis of nanoparticles in mammalian cells. International Journal of Nanomedicine, 9 (Suppl 1): 51‐63.
Olerile, L. D., Liu, Y., Zhang, B., Wang, T., Mu, S., Zhang, J., Selotlegeng, L., Zhang, N. (2017). Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surfaces B: Biointerfaces, 50: 121–130.
Panariti, A., Miserocchi, G., Rivolta, I. (2012). The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnology, Science and Applications, 7: 5: 87-100.
Parsons, M. (2004). Glycosomes: parasites and the divergence of peroxisomal purpose. Molecular Microbiology, 53(3): 717-724.
Parzych, K. R., Klionsky, D. J. (2013). An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & Redox Signaling, 20(3): 460–473.
Pelley, J. L., Daar, A. S., Saner, M. A. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicological Sciences, (2009). 112(2), 276‐296.
Pereira, G., Monteiro, C. A. P., Albuquerque, G. M., Pereira, M. I. A., Cabrera, M. P., Cabral Filho, P. E., Pereira, G. A. L., Fontes, A., Santos, B. S. (2009). (Bio) conjugation Strategies Applied to Fluorescent Semiconductor Quantum Dots. Journal of the Brazilian Chemical Society, 30(12), 2536-2561.
Porto-Carreiro, I., Attias, M., Miranda, K., De Souza, W., Cunha-e-Silva, N. (2000). Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. European Journal of Cell Biology, 79(11), 858-69.
Probst, C. E., Zrazhevskiy, P., Bagalkot, V., Gao, X. (2013). Quantum dots as a platform for nanoparticle drug delivery vehicle design. Advanced Drug Delivery Reviews, 65(5), 703-18.
Qiu, X., Zhu, X., Su, X., Xu, M., Yuan, W., Liu, Q., Xue, M., Liu, Y., Feng, W., Li, F. (2019). Near-Infrared Upconversion Luminescence and Bioimaging In vivo Based on Quantum Dots. Advanced Science, 18, 6(5), 1801834.
Rohloff, P., Montalvetti, A., Docampo, R. (2004). Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. Journal of Biological Chemistry, 279(50): 52270-81.
Rohloff, P., Docampo, R. A. (2008). Contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. Experimental Parasitology, 118(1), 17-2.
Salatin, S., Yari, K. A. (2017). Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 2017, 21(9), 1668-1686.
Sangtani, A., Petryayeva, E., Wu, H., Susumu, K., Oh, E., Huston, Al., Lasarte—Aragones, L. Medintz, I.L., Algar, W. R., & Delehanty, J. B. (2018). Intracellulary Actuated Quantum Dot- Peptide – Doxorubicin Nanobioconjugates for Controlled Drug via Endocytic Pathway. Bioconjugate Chemistry, 29, 136-48.
Sant’anna, C., Souza, W., Cunha-E-Silva, N. (2004). Biogenesis of the reservosomes of Trypanosoma cruzi. Microscopy and Microanalysis, 10(5), 637-46.
Santos, B. S., Farias, P. M. A., Menizes, F.D, Ferreira, R. C., Giorgio, S., Bosetto, M. C., Ayres, D. C., Fontes, A., Cesar, C. L., Lima, P. R. M., Mariano, E. A. L., & Thomaz, A. A. (2006). Molecular Differentiation of Leishmania Protozoarium using CdS Quantum Dots as Biolabels. Proceedings of SPIE, International Society for Optical Engineering, 6097, 06-013.
Santos, B. S., Neto, C. G. A., Silva, T. G., Seabra, M. A. B. L., Lira, R. B. & Fontes, A. (2012). Quantum Dots in Biomedical Research. In: Radovan Hudak, Marek Penhaker and Jaroslav Majernik (Org.). Biomedical Engineering - Technical Applications in Medicine, 1ed.Rijeka: InTech Open, 1, 1-22.
Singh, R. D., Shandilya, R., Bhargava, A., Kumar, R., Tiwari, R., Chaudhury, K., Srivastava, R. K., Goryacheva, I. Y., Mishra, P. K. (2018). Quantum Dot Based Nano-Biosensors for Detection of Circulating Cell Free miRNAs in Lung Carcinogenesis: From Biology to Clinical Translation. Frontiers in Genetics, 9, 616.
Soares, M. J. (1999). The reservosome of Trypanosoma cruzi epimastigotes: an organelle of the endocytic pathway with a role on metacyclogenesis. Memórias do Instituto Oswaldo Cruz, 94(Suppl 1), 139-141.
Soenen, S. J., Rivera-Gil, P., Montenegro, J. M., Parak, W. J, Smedt, S. C., Braeckmans, K. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 6(5), 446-65.
Szymanski, C. J., Yi, H., Liu, J. L., Wright, E. R., Payne, C. K. (2013). Imaging intracellular quantum dots: fluorescence microscopy and transmission electron microscopy. Methods in Molecular Biology, 1026, 21‐33.
Tan, H. W., Liang, Z. L., Yao, Y., Wu, D. D., Mo, H. Y., Gu, J., Chiu, J. F, Xu, Y. M., Lau, A. (2019). Lasting DNA Damage and Aberrant DNA Repair Gene Expression Profile Are Associated with Post-Chronic Cadmium Exposure in Human Bronchial Epithelial Cells. Cells, 8(8), 842.
Teixeira, D. E., Benchimol, M., Crepaldi, P. H., Souza, W. In: Ciclo de vida do Trypanosoma cruzi. (Life cycle of Trypanosoma cruzi) Rio de Janeiro: Consórcio CEDERJ. 2011. 50p.
Vasudevan, D., Gaddam, R. R., Trinchi, A., Cole, I. (2015). Core–shell quantum dots: Properties and applications. Journal of Alloys and Compounds, 636, 395-404
Vieira, C. S., Almeida, D. B., de Thomaz, A. A., Menna-Barreto, R. F., Santos-Mallet, J. R., Cesar, C. L., Gomes, S. A., Feder, D. (2011). Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz, 106(2), 158–165.
Xiang, Q., Wang, Y., Wu, W., Meng, X., Qiao, Y., Xu, L., Liu, X. (2013). Carnosic acid protects against ROS/RNS-induced protein damage and upregulates HO-1 expression in RAW264.7 macrophages. Journal of Functional Foods, 5(1), 362– 369.
Xiang, L., Zhang, F., Feng, J., Chen, C., Cai, C. (2020). Single-excited double-emission CdTeCdS quantum dots for use in a fluorometric hybridization assay for multiple tumor-related microRNAs. Mikrochim Acta, 187(2), 134.
Wang, M., Wang, J., Sun, H., Han, S., Feng, S., Shi, L., Meng, P., Li, J., Huang, P., Sun, Z. (2016). Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals. International Journal of Nanomedicine, 11, 2319-2328.
Westenberger, S. J., Cerqueira, G. C., El-Sayed, N. M., Zingales, B., Campbell, D. A., Sturm, N. R. (2006). Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genomics, 22, 7: 60.
Winnik, F. M. & Maysinger, D. (2013). Quantum dot cytotoxicity and ways to reduce it. Accounts of Chemical Research, 46(3), 672-80.
Yang, Q., Li, F., Miao, Y., Luo, X., Dai, S., Liu, J., Niu, W., Sun, Y. (2020). CdSe/ZnS quantum dots induced spermatogenesis dysfunction via autophagy activation. Journal of Hazardous Materials, 398, 122327.
Yuan, Y., Zhang, Y., Zhao, S., Chen, J., Yang, J., Wang, T., Zou, H., Wang, Y., Gu, J., Liu, X., Bian, J., Liu, Z. (2018). Cadmium-induced apoptosis in neuronal cells is mediated by Fas/FasL-mediated mitochondrial apoptotic signaling pathway. Scientific Reports, 8(1), 8837.
Zhang, M., Bishop, B. P., Thompson, N. L., Hildahl, K., Dang, B., Mironchuk, O., Chen, N., Aoki, R., Holmberg, V. C., Nance, E. (2019). Quantum Dot Cellular Uptake and Toxicity in the Developing Brain: Implications for use as Imaging Probes. Nanoscale Advances, 1(9), 3424-3442.
Zhao, Y., Zhang, Y., Qin, G., Cheng, J., Zeng, W., Liu, S., Kong, H., Wang, X., Wang, Q., and Qu, H. (2017). In vivo biodistribution and behavior of CdTe/ZnS quantum dots. International Journal of Nanomedicine, 9(12), 1927-39.
Zheng, H., Mortensen, L. J., DeLouise, L. A. (2013). Thiol antioxidant functionalized CdSe/ZnS quantum dots: synthesis, characterization, cytotoxicity. Journal of Biomedical Nanotechnology, 9(3), 382‐392.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Graziella Santos Martins; Suzete Araújo Oliveira Gomes; Sônia Renaux Wanderley Louro; Eliane Wajnberg; Odivaldo Cambraia Alves; Diogo Burigo Almeida; Carlos Lenz Cesar; Denise Feder
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.