Evaluación de la toxicidad biológica de los puntos cuánticos de CdTe en Trypanosoma cruzi

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i12.11274

Palabras clave:

Parásitos protozoarios; Nanopartículas de fluorescencia; Bioimagen; Nanotoxicidad.

Resumen

Los nanocristales semiconductores luminiscentes o puntos cuánticos (QD) emergen como importantes sondas fluorescentes para estudios in vitro e in vivo con células de Trypanosoma cruzi. Sin embargo, para garantizar la aplicabilidad a los organismos vivos, aún deben realizarse varias pruebas. Dado que varios eventos tóxicos son causados por QD, como la pérdida del potencial de la membrana mitocondrial, la generación de ROS, el daño del ADN y la muerte celular por autofagia. Realizamos una revisión de la literatura sobre los mecanismos de captación celular, internalización y citotoxicidad de las nanopartículas, incluidos nuestros resultados sobre la evaluación de la toxicidad biológica en T. cruzi. Evaluamos los posibles efectos sobre las curvas de crecimiento del parásito en una escala de tiempo de control y las células incubadas con diferentes concentraciones de CdTe - QDs (0.2; 2.0; 20; 200µM) para determinar los cambios en las células de desarrollo. Además, las ROS intracelulares se midieron mediante la técnica de espectroscopia de resonancia paramagnética electrónica (EPR). Según nuestros resultados, podemos inferir que los efectos tóxicos de las QD en T. cruzi son dosis-dependientes y que los niveles altos de ROS están implicados en la toxicidad celular promovida por concentraciones más altas de QD. En resumen, los parásitos etiquetados con bajas concentraciones de nanopartículas son adecuados y pueden usarse como herramientas de bioimagen para parásitos vivos. Sin embargo, es necesario realizar más estudios sobre citotoxicidad QD.

Citas

Abbasi, E., Kafshdooz, T., Bakhtiary, M., Nikzmir. N., Nikzamir, N. A., Nikzamir, M., Mohammadian, M. & Akbarzadeh, A. (2016). Biomedical and biological applications of quantum dots. Artificial Cells Nanomedicine Biotechnology, 44(3): 885-91.

Banerjee, A., Pons, T., Lequeux, N. & Dubertret, B. (2016). Quantum dots-DNA bioconjugates: synthesis to applications. Interface Focus, 6(6): 20160064.

Beddoes C. M., Case C. P., Briscoe W. H. Understanding nanoparticle cellular entry: A physicochemical perspective. Advances Colloid Interface Science, 218:48‐68.

Brkić S. (2015) Applicability of Quantum Dots in Biomedical Science. In: Djezzar B. org. Ionizing Radiation Effects and Applications. Intech Open, p.1-21.

Buchman, J. T., Hudson-Smith, N. V., Landy K. M., Haynes C.L. (2019) Understanding Nanoparticle Toxicity Mechanisms to Inform Redesign Strategies to Reduce Environmental Impact. Accounts of Chemical Research, 52(6): 1631-1642.

Caballero- Diaz, E. & Cases, M. V. (2016). Analytical methodologies for nanotoxicity assessment. Trends in Analytical Chemistry, 84,160-171.

Cannino, G., Ferruggia, E., Luparello, C. & Rinaldi, A. M. (2009). Cadmium and mitochondria. Mitochondrion, 9(6): 377-84.

Canton, I. & Battaglia, G. (2012). Endocytosis at the nanoscale. Chemical Society Reviews, 41(7): 2718-39.

Cavalier-Smith, T. (2010). Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biology Letters, 23, 6(3): 342-5.

Chandrasekaran, B., Dahiya N. R., Tyagi, A., Kolluru, V., Saran, U., Baby B.V., States, J. C., Haddad, A. Q., Ankem M. K., Damodaran, C. (2020). Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis, 9 (2): 23.

Chaves, C. R., Fontes, A., Farias, P. M. A., Santos, B. S., Menezes, F. D., Ferreira, C., Cesar, C. L., Galembeck, A., Figueiredo, R. C. B. Q. ( 2008). Application of core-shell pegylated CdS/Cd (OH) 2 quantum dots as biolabels of Trypanosoma cruzi parasites. Applied Surface Science, 255(3): 728-30.

Chen G., Zhang Y., Peng Z., Huang D., Li C., Wang, Q. (2019). Glutathione-capped quantum dots for plasma membrane labeling and membrane potential imaging. Nano Research, 12: 1321–1326.

Cunha-e-Silva, N., Sant'Anna, C., Pereira, M. G., Porto-Carreiro, I., Jeovanio, A. L., de Souza, (2006). Reservosomes: multipurpose organelles? Parasitology Research, 99(4): 325-7.

De Souza W. (2002) Cell Biology of Trypanosoma cruzi. Current Pharmaceutical Desgni, 8: 269:85.

De Souza (2009). Structural organization of Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz, 104 Suppl1:89-100.

Dias, J. C. P. & Amato Neto, V. (2011). Prevention concerning the different alternative routes for transmission of Trypanosoma cruzi in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 44(2): 68-72.

Di Meo, S., Reed, T. T., Venditti, P., Victor V. M. (2016). Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Medicine and Cellular Longevity, 1245049.

Feder, D., Gomes, S. A. O., Thomaz, A. A., Almeida, D. B., Faustino W. M., Fontes, A., Stahl, C. V., Santos-Mallet, J. R. & Cesar, C. L. (2009). In vitro and in vivo documentation of quantum dots labeled Trypanosoma cruzi –Rhodnius prolixus interaction using confocal microscopy. Parasitology Research, 106(1): 85-9.

Ferreira, L. A. B., Radaic, A., Pugliese, G. O., Valentini, M. B., Oliveira, M. R., de Jesus, M. B. (2014). Endocytosis and intracellular trafficking of nanomaterials. Acta Farmacêutica Portuguesa, 3 (2): 143-54.

Field, L. D., Chen, Y. C., Delehanty, J. B. (2020). Semiconductor quantum dots for visualization and sensing in neuronal cell systems. In: Basic Neurobiology Techniques, 152: 1–18.

Field, M. C., Carrington, M. (2009). The trypanosome flagellar pocket. Nature Reviews Microbiology, 7(11): 775-86.

Fontes, A., Beate, S., Chaves, C. R. & Figueiredo, R. C. B. (2012). Q. II-VI Quantum Dots as Fluorescent Probes for Studying Trypanosomatides, In: Ameenah Al-Ahmadi. (Org.). Quantum Dots - A Variety of New Applications, 1ed. Rijeka: InTech Open, v. 1, p. 241-260.

Geske – Moritz M, Moritz, M. (2013). Quantum dots as versatile probes in medical sciences: Synthesis, modification and properties. Materials Science & Engineering. C, 33(3):1008-1021.

Gomes, S. A. O., Vieira, C. S., Almeida, D. B., Santos-Mallet, J., Menna-Barreto, R. F. S., CESAR, C. L. & Feder, D. (2011). CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms. Sensors, 11: 11664-11678, doi:10.3390/s111211664.

He, T., Shen, H., Zhu, J., Zhu, Y., He, Y., Li, Z., Lu, H. (2019). Geniposide attenuates cadmium‑induced oxidative stress injury via Nrf2 signaling in osteoblasts. Molecular Medicine Report, 20 (2): 1499-1508.

He, W., Liu, Y., Wamer, W. G., Yin, J. J. (2014). Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1):49‐63.

He, S. J., Cao, J., Li, Y. S., Yang, J. C., Zhou, M., Qu, C. Y., Zhang, Y., Shen, F., Chen, Y., Li, M. M., Xu, L. M. (2016). CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells. World Journal of Gastroenterology, 22(21): 5012–5022.

Hu, L., Zeng, G., Chen, G., Huang, Z., Wan, J., Chen, A., Yu, Z., Yang, J., He, K., Qin, L. (2017). Bioaccumulation and toxicity of CdSe/ZnS quantum dots in Phanerochaete chrysosporium. Colloids and Surfaces B: Biointerfaces, 159: 303–311.

Hu, L., Zhong, H., He, Z. (2019). The cytotoxicities in prokaryote and eukaryote varied for CdSe and CdSe/ZnS quantum dots and differed from cadmium ions. Ecotoxicology and Environmental Safety, 181: 336-344.

Joardar, S., Dewanjee, S., Bhowmick, S., Dua T. K., Das S., Saha A. and De Feo V. (2019). Rosmarinic Acid Attenuates Cadmium-Induced Nephrotoxicity via Inhibition of Oxidative Stress, Apoptosis, Inflammation and Fibrosis. International Journal of Molecular Sciences, 20(8): 2027.

Khalili Fard, J., Jafari, S. & Eghbal, M. A. (2015). A Review of Molecular Mechanisms Involved in Toxicity of Nanoparticles. Advanced Pharmaceutical Bulletin, 5(4): 447-54.

Koren, A., Lunder, M., Molek, P., Kopac, P., Zahirovic, A., Gattinger, P., Korosec, P. (2020). Fluorescent labeling of major honeybee allergens Api m 1 and Api m 2 with Quantum dots and the development of a multiplex basophil activation test. Allergy, 00: 1–4.

Lai, L., Li, Y. P., Mei, P., Chen, W., Jiang, F. L., Liu, Y. (2016). Size Effects on the Interaction of QDs with the Mitochondrial Membrane In Vitro. The Journal of Membrane Biology, 249(6): 757–767.

Li, Y., Liz, Z., Wang, X., Liu, F., Cheng, Y., Zhang, B. & Shi, D. (2012). In vivo cancer targeting and imaging-guided surgery with near infrared-emitting quantum dot bioconjugates. Theranostics, 2(8): 769-76.

Li, L., Tian, J., Wang, X., Xu, G., Jiang, W., Yang, Z., Liu, D., Lin, G. (2019). Cardiotoxicity of Intravenously Administered CdSe/ZnS Quantum Dots in BALB/c Mice. Frontiers in Pharmacology, 10: 1179.

Lin, F., Peng, Y-H., Yang, Q-H., Mi, X-J. (2015). Resveratrol inhibits cadmium induced neuronal apoptosis by modulating calcium signalling pathway via regulation of MAPK/ mTOR network. Bangladesh Journal of Pharmacology, 10: 366-276.

Liu, C., Zhu, Y., Lu, Z., Guo, W., Tumen, B., He, Y., Chen, C., Hu, S., Xu, K., Wang, Y., Li, L., Li, S., Liu, C., Zhu, Y., Lu, Z., Guo, W., Tumen, B., He, Y., Chen, C., Hu, S., Xu, K., Wang, Y., Li, L., Li, S. (2019). Cadmium Induces Acute Liver Injury by Inhibiting Nrf2 and the Role of NF-κB, NLRP3, and MAPKs Signaling Pathway. International Journal of Environmental Research and Public Health, 17(1): 138.

Lyublinskaya, O. G., Borisov, Y. G., Pugovkina, N. A., Smirnova, I. S., Obidina, J. V., Ivanova, J. S., Zenin, V. V., Shatrova, A. N., Borodkina, A. V., Aksenov, N. D., Zemelko, V. I., Burova, E. B., Puzanov, M. V., Nikolsky, N. N. (2015). Reactive Oxygen Species Are Required for Human Mesenchymal Stem Cells to Initiate Proliferation after the Quiescence Exit. Oxidative Medicine and Cellular Longevity, 502105.

Manshian, B. B., Soenen, S. J., Al-Ali, A., Brown, A., Hondow, N., Wills, J., Jenkins, G. J., Doak, S. H. (2015). Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints. Toxicological Sciences, 144(2): 246–258.

Marques, W. A., Gomes, S. A. O., Almeida, D. B., Menna-Barreto, R. F. S., Santos-Mallet, J. R., Cesar, C. L., Feder, D. (2014). Evidence of autophagy in Trypanosoma cruzi cells by Quantum dots. Acta Microscoscopica, 23(1): 1-10.

Mattea, C. T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C. & Mocan, L. (2017). Quantum dots in imaging, drug delivery and sensor applications. International Journal of Nanomedicine, 12: 5421-5431.

Meng, J., Wang, W., Li, L., Yin, Q., Zhang, G. (2017). Cadmium effects on DNA and protein metabolism in oyster (Crassostrea gigas) revealed by proteomic analyses. Scientific Reports – Nature, 7(1): 11716.

Miller, I. P., Pavlović, I., Poljšak, B., Šuput, D., Milisav, I. (2019). Beneficial Role of ROS in Cell Survival: Moderate Increases in H2O2 Production Induced by Hepatocyte Isolation Mediate Stress Adaptation and Enhanced Survival. Antioxidants (Basel, Switzerland), 8(10): 434.

Montón, H., Roldán, M., Merkoci, A., Rossinyol, E., Castell, O. & Nogués, C. (2012). The use of Quantum Dots for Immunochemistry Application. Methods in Molecular Biology, 906: 185-92.

Neminche, S., Guiraud, P. (2016). Cadmium- induced oxidative stress damages in the human BJAB cell correlate with changes in intracellular trace elements levels and zinc transporters. Toxicology in Vitro, 37: 169-177.

Nanda, S. S., Kim, M. J., Kim, K., Papaefthymiou, G. C., Selvan, S. T., Yi, D. K. (2017). Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications. Colloids and Surfaces B: Biointerfaces, 159: 644–654.

Oh, N., Park, J. H. (2014). Endocytosis and exocytosis of nanoparticles in mammalian cells. International Journal of Nanomedicine, 9 (Suppl 1): 51‐63.

Olerile, L. D., Liu, Y., Zhang, B., Wang, T., Mu, S., Zhang, J., Selotlegeng, L., Zhang, N. (2017). Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surfaces B: Biointerfaces, 50: 121–130.

Panariti, A., Miserocchi, G., Rivolta, I. (2012). The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnology, Science and Applications, 7: 5: 87-100.

Parsons, M. (2004). Glycosomes: parasites and the divergence of peroxisomal purpose. Molecular Microbiology, 53(3): 717-724.

Parzych, K. R., Klionsky, D. J. (2013). An overview of autophagy: morphology, mechanism, and regulation. Antioxidants & Redox Signaling, 20(3): 460–473.

Pelley, J. L., Daar, A. S., Saner, M. A. State of academic knowledge on toxicity and biological fate of quantum dots. Toxicological Sciences, (2009). 112(2), 276‐296.

Pereira, G., Monteiro, C. A. P., Albuquerque, G. M., Pereira, M. I. A., Cabrera, M. P., Cabral Filho, P. E., Pereira, G. A. L., Fontes, A., Santos, B. S. (2009). (Bio) conjugation Strategies Applied to Fluorescent Semiconductor Quantum Dots. Journal of the Brazilian Chemical Society, 30(12), 2536-2561.

Porto-Carreiro, I., Attias, M., Miranda, K., De Souza, W., Cunha-e-Silva, N. (2000). Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. European Journal of Cell Biology, 79(11), 858-69.

Probst, C. E., Zrazhevskiy, P., Bagalkot, V., Gao, X. (2013). Quantum dots as a platform for nanoparticle drug delivery vehicle design. Advanced Drug Delivery Reviews, 65(5), 703-18.

Qiu, X., Zhu, X., Su, X., Xu, M., Yuan, W., Liu, Q., Xue, M., Liu, Y., Feng, W., Li, F. (2019). Near-Infrared Upconversion Luminescence and Bioimaging In vivo Based on Quantum Dots. Advanced Science, 18, 6(5), 1801834.

Rohloff, P., Montalvetti, A., Docampo, R. (2004). Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. Journal of Biological Chemistry, 279(50): 52270-81.

Rohloff, P., Docampo, R. A. (2008). Contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. Experimental Parasitology, 118(1), 17-2.

Salatin, S., Yari, K. A. (2017). Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 2017, 21(9), 1668-1686.

Sangtani, A., Petryayeva, E., Wu, H., Susumu, K., Oh, E., Huston, Al., Lasarte—Aragones, L. Medintz, I.L., Algar, W. R., & Delehanty, J. B. (2018). Intracellulary Actuated Quantum Dot- Peptide – Doxorubicin Nanobioconjugates for Controlled Drug via Endocytic Pathway. Bioconjugate Chemistry, 29, 136-48.

Sant’anna, C., Souza, W., Cunha-E-Silva, N. (2004). Biogenesis of the reservosomes of Trypanosoma cruzi. Microscopy and Microanalysis, 10(5), 637-46.

Santos, B. S., Farias, P. M. A., Menizes, F.D, Ferreira, R. C., Giorgio, S., Bosetto, M. C., Ayres, D. C., Fontes, A., Cesar, C. L., Lima, P. R. M., Mariano, E. A. L., & Thomaz, A. A. (2006). Molecular Differentiation of Leishmania Protozoarium using CdS Quantum Dots as Biolabels. Proceedings of SPIE, International Society for Optical Engineering, 6097, 06-013.

Santos, B. S., Neto, C. G. A., Silva, T. G., Seabra, M. A. B. L., Lira, R. B. & Fontes, A. (2012). Quantum Dots in Biomedical Research. In: Radovan Hudak, Marek Penhaker and Jaroslav Majernik (Org.). Biomedical Engineering - Technical Applications in Medicine, 1ed.Rijeka: InTech Open, 1, 1-22.

Singh, R. D., Shandilya, R., Bhargava, A., Kumar, R., Tiwari, R., Chaudhury, K., Srivastava, R. K., Goryacheva, I. Y., Mishra, P. K. (2018). Quantum Dot Based Nano-Biosensors for Detection of Circulating Cell Free miRNAs in Lung Carcinogenesis: From Biology to Clinical Translation. Frontiers in Genetics, 9, 616.

Soares, M. J. (1999). The reservosome of Trypanosoma cruzi epimastigotes: an organelle of the endocytic pathway with a role on metacyclogenesis. Memórias do Instituto Oswaldo Cruz, 94(Suppl 1), 139-141.

Soenen, S. J., Rivera-Gil, P., Montenegro, J. M., Parak, W. J, Smedt, S. C., Braeckmans, K. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 6(5), 446-65.

Szymanski, C. J., Yi, H., Liu, J. L., Wright, E. R., Payne, C. K. (2013). Imaging intracellular quantum dots: fluorescence microscopy and transmission electron microscopy. Methods in Molecular Biology, 1026, 21‐33.

Tan, H. W., Liang, Z. L., Yao, Y., Wu, D. D., Mo, H. Y., Gu, J., Chiu, J. F, Xu, Y. M., Lau, A. (2019). Lasting DNA Damage and Aberrant DNA Repair Gene Expression Profile Are Associated with Post-Chronic Cadmium Exposure in Human Bronchial Epithelial Cells. Cells, 8(8), 842.

Teixeira, D. E., Benchimol, M., Crepaldi, P. H., Souza, W. In: Ciclo de vida do Trypanosoma cruzi. (Life cycle of Trypanosoma cruzi) Rio de Janeiro: Consórcio CEDERJ. 2011. 50p.

Vasudevan, D., Gaddam, R. R., Trinchi, A., Cole, I. (2015). Core–shell quantum dots: Properties and applications. Journal of Alloys and Compounds, 636, 395-404

Vieira, C. S., Almeida, D. B., de Thomaz, A. A., Menna-Barreto, R. F., Santos-Mallet, J. R., Cesar, C. L., Gomes, S. A., Feder, D. (2011). Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz, 106(2), 158–165.

Xiang, Q., Wang, Y., Wu, W., Meng, X., Qiao, Y., Xu, L., Liu, X. (2013). Carnosic acid protects against ROS/RNS-induced protein damage and upregulates HO-1 expression in RAW264.7 macrophages. Journal of Functional Foods, 5(1), 362– 369.

Xiang, L., Zhang, F., Feng, J., Chen, C., Cai, C. (2020). Single-excited double-emission CdTeCdS quantum dots for use in a fluorometric hybridization assay for multiple tumor-related microRNAs. Mikrochim Acta, 187(2), 134.

Wang, M., Wang, J., Sun, H., Han, S., Feng, S., Shi, L., Meng, P., Li, J., Huang, P., Sun, Z. (2016). Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals. International Journal of Nanomedicine, 11, 2319-2328.

Westenberger, S. J., Cerqueira, G. C., El-Sayed, N. M., Zingales, B., Campbell, D. A., Sturm, N. R. (2006). Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genomics, 22, 7: 60.

Winnik, F. M. & Maysinger, D. (2013). Quantum dot cytotoxicity and ways to reduce it. Accounts of Chemical Research, 46(3), 672-80.

Yang, Q., Li, F., Miao, Y., Luo, X., Dai, S., Liu, J., Niu, W., Sun, Y. (2020). CdSe/ZnS quantum dots induced spermatogenesis dysfunction via autophagy activation. Journal of Hazardous Materials, 398, 122327.

Yuan, Y., Zhang, Y., Zhao, S., Chen, J., Yang, J., Wang, T., Zou, H., Wang, Y., Gu, J., Liu, X., Bian, J., Liu, Z. (2018). Cadmium-induced apoptosis in neuronal cells is mediated by Fas/FasL-mediated mitochondrial apoptotic signaling pathway. Scientific Reports, 8(1), 8837.

Zhang, M., Bishop, B. P., Thompson, N. L., Hildahl, K., Dang, B., Mironchuk, O., Chen, N., Aoki, R., Holmberg, V. C., Nance, E. (2019). Quantum Dot Cellular Uptake and Toxicity in the Developing Brain: Implications for use as Imaging Probes. Nanoscale Advances, 1(9), 3424-3442.

Zhao, Y., Zhang, Y., Qin, G., Cheng, J., Zeng, W., Liu, S., Kong, H., Wang, X., Wang, Q., and Qu, H. (2017). In vivo biodistribution and behavior of CdTe/ZnS quantum dots. International Journal of Nanomedicine, 9(12), 1927-39.

Zheng, H., Mortensen, L. J., DeLouise, L. A. (2013). Thiol antioxidant functionalized CdSe/ZnS quantum dots: synthesis, characterization, cytotoxicity. Journal of Biomedical Nanotechnology, 9(3), 382‐392.

Descargas

Publicado

26/12/2020

Cómo citar

MARTINS, G. S. .; GOMES, S. A. O. .; LOURO, S. R. W. .; WAJNBERG, E. .; ALVES, O. C. .; ALMEIDA, D. B. .; CESAR, C. L. .; FEDER, D. Evaluación de la toxicidad biológica de los puntos cuánticos de CdTe en Trypanosoma cruzi. Research, Society and Development, [S. l.], v. 9, n. 12, p. e34391211274, 2020. DOI: 10.33448/rsd-v9i12.11274. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11274. Acesso em: 7 jul. 2024.

Número

Sección

Revisiones